Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery
Abstract
:1. Introduction
2. Experimental Methods
2.1. Copper Slag Sampling and Preparation
2.2. Characterization Experiments
2.3. Pseudo-Total Concentrations
2.4. Sequential Extraction Experiments
3. Results and Discussion
3.1. Basic Characterization of Copper Slag Samples
3.2. XRD Analysis
3.3. FTIR Spectral Analysis
3.4. XPS Analysis
3.5. Sequential Extraction Analysis
3.6. Significance of the Study
4. Conclusions
- The physical and chemical properties of the CS1 and CS2 samples were different; for example, CS1 had a lower pH than CS2, and the elemental Cu content of CS1 was less than half that of CS2.
- The XRD results revealed that CS1 and CS2 had the same percentage composition of amorphous phases (37.37%), and their major crystalline phases were fayalite (Fe2SiO4) and magnetite (Fe3O4).
- The FTIR spectra revealed that CS2 had a more stable amorphous silicate network than CS1.
- The sequential extraction results show that, because of the high Fe and Zn contents of the copper slags, high leaching contents can be obtained, even at low leaching percentages. This indicates that copper slags are effective sources of Fe and Zn extraction, which is one of the significant values for secondary recovery. In the natural environment, approximately 27% and 37% of Cu could be easily leached from CS1 and CS2, respectively. Elemental Pb in the samples existed mainly as a stable phase. Furthermore, the above results clarified the distribution and existence forms of the four elements in copper slags, which provided a theoretical basis for the design of a more effective secondary recovery process.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colasante, A.; D’Adamo, I.; Morone, P. What drives the solar energy transition? The effect of policies, incentives and behavior in a cross-country comparison. Energy Res. Soc. Sci. 2022, 85, 102405. [Google Scholar] [CrossRef]
- Rivera, N.; Guzmán, J.I.; Jara, J.J.; Lagos, G. Evaluation of econometric models of secondary refined copper supply. Resour. Policy 2021, 73, 102170. [Google Scholar] [CrossRef]
- Xu, X.; Qi, C.; Aretxabaleta, X.M.; Ma, C.; Spagnoli, D.; Manzano, H. The initial stages of cement hydration at the molecular level. Nat. Commun. 2024, 15, 2731. [Google Scholar] [CrossRef]
- Hund, K.; La Porta, D.; Fabregas, T.P.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; World Bank: Singapore, 2020. [Google Scholar]
- Harmsen, J.H.M.; Roes, A.L.; Patel, M.K. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 2013, 50, 62–73. [Google Scholar] [CrossRef]
- Watari, T.; Northey, S.; Giurco, D.; Hata, S.; Yokoi, R.; Nansai, K.; Nakajima, K. Global copper cycles and greenhouse gas emissions in a 1.5 °C world. Resour. Conserv. Recycl. 2022, 179, 106118. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Yang, C.; Xu, Z. Global supply risk assessment of the metals used in clean energy technologies. J. Clean. Prod. 2022, 331, 129602. [Google Scholar] [CrossRef]
- Fuentes, M.; Negrete, M.; Herrera-León, S.; Kraslawski, A. Classification of indicators measuring environmental sustainability of mining and processing of copper. Miner. Eng. 2021, 170, 107033. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The potential for copper slag waste as a resource for a circular economy: A review—Part II. Miner. Eng. 2021, 172, 107150. [Google Scholar] [CrossRef]
- Sharifi, Y.; Afshoon, I.; Asad-Abadi, S.; Aslani, F. Environmental protection by using waste copper slag as a coarse aggregate in self-compacting concrete. J. Environ. Manag. 2020, 271, 111013. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, W.; Zeng, D.; Zhu, L.; Gao, C.; Hu, M.; Le, C.; Qiu, T. Volatilization of Zn and Pb and preparation of integrated micro-electrolysis filter from copper slag and its application for removing Cr(VI) from aqueous solution. Chemosphere 2022, 288, 132596. [Google Scholar] [CrossRef]
- Kumar, A.; Tejaswini, M.L. Studies on hardened properties of concrete incorporated with copper slag. Mater. Today Proc. 2022, 60, 646–657. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Baśladyńska, S.; Szustakiewicz, K.; Gorazda, K.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. From hazardous waste to fertilizer: Recovery of high-value metals from smelter slags. Chemosphere 2022, 297, 134226. [Google Scholar] [CrossRef] [PubMed]
- Holland, K.; Eriç, R.H.; Taskinen, P.; Jokilaakso, A. Upgrading copper slag cleaning tailings for re-use. Miner. Eng. 2019, 133, 35–42. [Google Scholar] [CrossRef]
- Filipović, S.; Đokić, O.; Radević, A.; Zakić, D. Copper Slag of Pyroxene Composition as a Partial Replacement of Natural Aggregate for Concrete Production. Minerals 2021, 11, 439. [Google Scholar] [CrossRef]
- Murari, K.; Siddique, R.; Jain, K.K. Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste Manag. 2015, 17, 13–26. [Google Scholar] [CrossRef]
- Wang, R.; Shi, Q.; Li, Y.; Cao, Z.; Si, Z. A critical review on the use of copper slag (CS) as a substitute constituent in concrete. Constr. Build. Mater. 2021, 292, 123371. [Google Scholar] [CrossRef]
- Peirovi, M.; Labafzadeh, M.S.; Dehghani, A.; Meftahi, F. Durability and mechanical properties of precast concrete curb containing waste copper slag. Mag. Concr. Res. 2019, 71, 567–576. [Google Scholar] [CrossRef]
- Rajasekar, A.; Arunachalam, K.; Kottaisamy, M. Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete. J. Clean. Prod. 2019, 208, 402–414. [Google Scholar] [CrossRef]
- Gursel, A.P.; Ostertag, C. Life-Cycle Assessment of High-Strength Concrete Mixtures with Copper Slag as Sand Replacement. Adv. Civ. Eng. 2019, 2019, 6815348. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Hisada, M.; Al-Oraimi, S.K.; Al-Saidy, A.H. Copper slag as sand replacement for high performance concrete. Cem. Concr. Compos. 2009, 31, 483–488. [Google Scholar]
- Al-Jabri, K.S.; Al-Saidy, A.H.; Taha, R. Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Constr. Build. Mater. 2011, 25, 933–938. [Google Scholar] [CrossRef]
- He, R.; Zhang, S.; Zhang, X.; Zhang, Z.; Zhao, Y.; Ding, H. Copper slag: The leaching behavior of heavy metals and its applicability as a supplementary cementitious material. J. Environ. Chem. Eng. 2021, 9, 105132. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The potential for copper slag waste as a resource for a circular economy: A review—Part I. Miner. Eng. 2022, 180, 107474. [Google Scholar] [CrossRef]
- Linsong, W.; Zhiyong, G.; Honghu, T.; Li, W.; Haisheng, H.; Wei, S.; Yongbao, Q.; Yue, Y. Copper recovery from copper slags through flotation enhanced by sodium carbonate synergistic mechanical activation. J. Environ. Chem. Eng. 2022, 10, 107671. [Google Scholar] [CrossRef]
- Zheng, W.; He, D.; Wang, Y.; Chen, J.; Xue, M.; Li, H. Preparation of cement-based color facing mortar by copper pyrometallurgical slag modification: Efficient utilization of high-iron-content slag. J. Environ. Chem. Eng. 2021, 9, 105888. [Google Scholar] [CrossRef]
- Shi, Y.; Li, B.; Dai, G.; Zhou, S.; Wang, H.; Wei, Y. Effect of calcium borate on sedimentation of copper inclusions in copper slag. Chin. J. Process Eng. 2019, 19, 553–559. [Google Scholar]
- Roy, S.; Sarkar, S.; Datta, A.; Rehani, S. Importance of mineralogy and reaction kinetics for selecting leaching methods of copper from copper smelter slag. Sep. Sci. Technol. 2016, 51, 135–146. [Google Scholar] [CrossRef]
- Hughes, S.; Reuter, M.A.; Baxter, R.; Kaye, A.; Hughes, S.; Reuter, M.; Baxter, R.; Kaye, A. Ausmelt technology for lead and zinc processing. Lead Zinc 2008, 2008, 147–162. [Google Scholar]
- Mounsey, E.N.; Robilliard, K.R. Sulfide smelting using ausmelt technology. JOM 1994, 46, 58–60. [Google Scholar] [CrossRef]
- Hughes, S.; Reuter, M.; Kaye, A. Ausmelt Technology-Developments in Copper; Metalexpo Annual Exhibition: Moscow, Russia, October 2007. [Google Scholar]
- Kaur, R.; Nexhip, C.; Krippner, D.; George-Kennedy, D.; Routledge, M. Kennecott-Outotec ‘double flash’technology after 16 years. In Proceedings of the 13th International Flash Smelting Congress, Livingstone, Zambia, 1 October 2011. [Google Scholar]
- Han, F.; Yu, F.; Cui, Z. Industrial metabolism of copper and sulfur in a copper-specific eco-industrial park in China. J. Clean. Prod. 2016, 133, 459–466. [Google Scholar] [CrossRef]
- Mackey, P. Evolution of the Large Copper Smelter—1800s to 2013. In Celebrating the Megascale: Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David GC Robertson; Springer: Berlin/Heidelberg, Germany, 2016; pp. 17–37. [Google Scholar]
- Kojo, I.; Lahtinen, M.; Miettinen, E. Flash converting–sustainable technology now and in the future. In International Peirce-Smith Converting Centennial; Outotec Oyj: Espoo, Finland, 2009. [Google Scholar]
- Mihajlović, A.; Kamberović, Ž.; Korać, M.; Gavrilovski, M.; Jovanović, N. The effect of cooling rate of slag from primary copper production in the valorization of copper in the flotation process. Metall. Mater. Eng. 2015, 21, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-X.; Xu, D.-M.; Fu, R.-B.; Chen, J.-P. Bioavailability Assessment of Heavy Metals Using Various Multi-Element Extractants in an Indigenous Zinc Smelting Contaminated Site, Southwestern China. Int. J. Environ. Res. Public Health 2021, 18, 8560. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.-T.; Chu, J. Assessment of the use of spent copper slag for land reclamation. Waste Manag. Res. 2006, 24, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cheng, L.; Zhang, D.; Zhang, F.; Zhou, S.; Ma, Y.; Guo, J.; Zhang, Y.; Xing, B. Stabilization of Pb, Cd, and Zn in soil by modified-zeolite: Mechanisms and evaluation of effectiveness. Sci. Total Environ. 2022, 814, 152746. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Huang, R.; Mao, P.; Lei, L.; Li, Y.; Li, Y.; Xia, H.; Li, Z.; Zhuang, P. Immobilization of Cadmium by Molecular Sieve and Wollastonite Is Soil pH and Organic Matter Dependent. Int. J. Environ. Res. Public Health 2021, 18, 5128. [Google Scholar] [CrossRef] [PubMed]
- Mastersizer 3000 Manual. Available online: https://www.manualslib.com/manual/1524845/Malvern-Mastersizer-3000.html#manual (accessed on 9 September 2021).
- Yang, J.; Jeon, D.; Kang, H.; Shang, X.; Moon, J. Hydrophobic treatment on hollow glass microspheres for enhancing the flowability of lightweight high-performance cementitious composites. Constr. Build. Mater. 2023, 409, 133856. [Google Scholar] [CrossRef]
- Yang, J.; Kang, H.; Shi, C.; Hu, X.; Moon, J. Tomographic analysis of segregation behavior of hollow glass microspheres in lightweight cementitious composites. Cem. Concr. Compos. 2024, 149, 105516. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, X.; De La Torre, A.; Lu, L.; Sobolev, K. Assessment of the quantitative accuracy of Rietveld/XRD analysis of crystalline and amorphous phases in fly ash. Anal. Methods 2017, 9, 2415–2424. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. Gsas. Rep. Laur 1994, 86–748. [Google Scholar]
- Liu, H.; Zhao, P.; Wang, S.; Gong, C.; Lu, L. Rietveld Quantitative Analysis of Amorphous Phase in Slag by Internal Standard Method. In Proceedings of the 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 10–11 February 2018; pp. 379–382. [Google Scholar]
- Swann, G.E.A.; Patwardhan, S.V. Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Clim. Past 2011, 7, 65–74. [Google Scholar] [CrossRef]
- Abdel-Aal, R.E. Comparison of Algorithmic and Machine Learning Approaches for the Automatic Fitting of Gaussian Peaks. Neural Comput. Appl. 2002, 11, 17–29. [Google Scholar] [CrossRef]
- Qi, C.; Wu, M.; Liu, H.; Liang, Y.; Liu, X.; Lin, Z. Machine learning exploration of the mobility and environmental assessment of toxic elements in mining-associated solid wastes. J. Clean. Prod. 2023, 401, 136771. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, B.; Nakama, S.; Sasaki, K. Distributions and Leaching Behaviors of Toxic Elements in Fly Ash. ACS Omega 2018, 3, 13055–13064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shang, P.; Wang, J.; Norris, P.; Romero, C.E.; Pan, W.-P. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants. Fuel 2017, 208, 647–654. [Google Scholar] [CrossRef]
- Li, J.; Kosugi, T.; Riya, S.; Hashimoto, Y.; Hou, H.; Terada, A.; Hosomi, M. Pollution potential leaching index as a tool to assess water leaching risk of arsenic in excavated urban soils. Ecotoxicol. Environ. Saf. 2018, 147, 72–79. [Google Scholar] [CrossRef]
- Van Herck, P.; Vandecasteele, C. Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste. Waste Manag. 2001, 21, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-Q.; Ping, S.; Wang, H.-Y.; Ni, W. Recovery of iron from copper slag by deep reduction and magnetic beneficiation. Int. J. Miner. Metall. Mater. 2013, 20, 1035–1041. [Google Scholar] [CrossRef]
- Gabasiane, T.S.; Danha, G.; Mamvura, T.A.; Mashifana, T.; Dzinomwa, G. Characterization of copper slag for beneficiation of iron and copper. Heliyon 2021, 7, e06757. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, H.; Serra, J.; González, P.; León, B. Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J. Non-Cryst. Solids 2009, 355, 475–480. [Google Scholar] [CrossRef]
- Rada, S.; Dehelean, A.; Stan, M.; Chelcea, R.; Culea, E. Structural studies on iron–tellurite glasses prepared by sol–gel method. J. Alloys Compd. 2011, 509, 147–151. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Wang, H.; Yang, Y.; McLean, A. Effects of Na2O additions to copper slag on iron recovery and the generation of ceramics from the non-magnetic residue. J. Hazard. Mater. 2020, 399, 122845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.W.; Chai, L.Y.; Peng, B.; Liang, Y.J.; He, Y.; Yan, Z.H. Arsenic vitrification by copper slag based glass: Mechanism and stability studies. J. Non-Cryst. Solids 2017, 466–467, 21–28. [Google Scholar] [CrossRef]
- Park, H.; Park, J.Y.; Kim, G.H.; Sohn, I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int. 2012, 83, 150–156. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, B.; Zhou, W.; Diao, J.; Li, H.-Y. Structural characterization of FeO–SiO2–V2O3 slags using molecular dynamics simulations and FT-IR spectroscopy. ISIJ Int. 2016, 56, 828–834. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Q.; Zhou, Y.; Yang, Q.; Zhang, Q.; Jiang, L.; Guo, H. Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity. Constr. Build. Mater. 2020, 240, 117970. [Google Scholar] [CrossRef]
- Korin, E.; Froumin, N.; Cohen, S. Surface Analysis of Nanocomplexes by X-ray Photoelectron Spectroscopy (XPS). ACS Biomater. Sci. Eng. 2017, 3, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.; Zhang, L.; Fu, W.; Wang, S.; Yin, W.; Chen, H. Mechanistic study on calcium ion diffusion into fayalite: A step toward sustainable management of copper slag. J. Hazard. Mater. 2021, 410, 124630. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Tak, Y.; Kim, J.; Yong, K. Low-temperature synthesized ZnO nanoneedles: XPS and PL analysis. Surf. Rev. Lett. 2007, 14, 1061–1065. [Google Scholar] [CrossRef]
- Iaiche, S.; Djelloul, A. ZnO/ZnAl2O4 nanocomposite films studied by X-ray diffraction, FTIR, and X-ray photoelectron spectroscopy. J. Spectrosc. 2015, 2015, 836859. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Tian, X.; Li, X.; Bi, P. Effect of O-isobutyl-N-ethyl thionocarbamates on flotation behavior of porphyry copper ore and its adsorption mechanism. Appl. Surf. Sci. 2020, 503, 144313. [Google Scholar] [CrossRef]
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Van der Heide, P. X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gorai, B.; Jana, R. Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Carraro, G.; Gasparotto, A.; Maccato, C.; Peeters, D.; Barreca, D. Fe2O3-CuO nanocomposites prepared by a two-step vapor phase strategy and analyzed by XPS. Surf. Sci. Spectra 2014, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Thomas, J.M.; Tricker, M.J. Electronic structure of the oxides of lead. Part 2.—An XPS study of bulk rhombic PbO, tetragonal PbO, β-PbO2 and Pb3O4. J. Chem. Soc. Faraday Trans. 2 1975, 71, 329–336. [Google Scholar] [CrossRef]
- Sineva, S.; Shevchenko, M.; Shishin, D.; Hidayat, T.; Chen, J.; Hayes, P.C.; Jak, E. Phase Equilibria and Minor Element Distributions in Complex Copper/Slag/Matte Systems. JOM 2020, 72, 3401–3409. [Google Scholar] [CrossRef]
- Rüşen, A.; Topçu, M.A. Investigation of zinc extraction from different leach residues by acid leaching. Int. J. Environ. Sci. Technol. 2018, 15, 69–80. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, Y.; Kang, Y.; Gao, J.; Guo, Z. Promoted Acid Leaching of Zn from Hazardous Zinc-Containing Metallurgical Dusts: Focusing on Transformation of Zn Phases in Selective Reduction Roasting. Process Saf. Environ. Prot. 2022, 163, 353–361. [Google Scholar] [CrossRef]
- Ettler, V.; Mihaljevič, M.; Šebek, O.; Molek, M.; Grygar, T.; Zeman, J. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ. Pollut. 2006, 142, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, X.; Tian, B.; Wang, J.; Qi, S.; Yang, Y.; Xin, B. Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms. Waste Manag. 2019, 87, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Vakylabad, A.B.; Schaffie, M.; Ranjbar, M.; Manafi, Z.; Darezereshki, E. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors. J. Hazard. Mater. 2012, 241, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Chlopecka, A. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland. Sci. Total Environ. 1996, 188, 253–262. [Google Scholar] [CrossRef]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, G.; Zhang, L.; Zhou, C. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. J. Hazard. Mater. 2021, 401, 123293. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Vassilieva, E.; Phung, N.K. Leachability of arsenic and heavy metals from blasted copper slag and contamination of marine sediment and soil in Ninh Hoa district, south central of Vietnam. Appl. Geochem. 2014, 44, 80–92. [Google Scholar]
- Wang, Y.; Liu, M.; Dong, N.; Lin, Y.; Chang, G.; Wei, G.; Zhao, K.; Wang, X.; Zheng, A.; Zhao, Z.; et al. Chemical looping gasification of high nitrogen wood waste using a copper slag oxygen carrier modified by alkali and alkaline earth metals. Chem. Eng. J. 2021, 410, 128344. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Wei, Y.; Wang, H.; Yang, Y. Effect of CaO on Copper Loss and Phase Transformation in Copper Slag. Metall. Mater. Trans. B 2022, 53, 1538–1551. [Google Scholar] [CrossRef]
- Pathak, A.; Rana, M.S.; Al-Sheeha, H.; Navvmani, R.; Al-Enezi, H.M.; Al-Sairafi, S.; Mishra, J. Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst. Environ. Sci. Pollut. Res. 2022, 29, 34288–34301. [Google Scholar] [CrossRef]
- Gabasiane, T.S.; Danha, G.; Mamvura, T.A.; Mashifana, T.; Dzinomwa, G. Environmental and socioeconomic impact of copper slag—A review. Crystals 2021, 11, 1504. [Google Scholar] [CrossRef]
Parameters | CS1 | CS2 | Parameters | CS1 | CS2 |
---|---|---|---|---|---|
True Density (g/cm3) | 3.98 | 3.91 | Electrical conductivity (mS/cm) | 24.30 | 23.30 |
pH | 6.85 | 7.08 | CEC (cmol+/kg) | 61.40 | 59.50 |
Component | CS1 (wt.%) | CS2 (wt.%) | Component | CS1 (wt.%) | CS2 (wt.%) |
---|---|---|---|---|---|
O | 38.90 | 38.50 | Mo | 0.13 | 0.30 |
Fe | 34.95 | 34.31 | Ba | 0.11 | 0.02 |
Si | 16.40 | 15.84 | As | 0.09 | 0.17 |
Al | 3.01 | 2.59 | Mn | 0.05 | 0.05 |
Zn | 1.42 | 1.34 | P | 0.04 | 0.04 |
K | 1.20 | 1.02 | Cr | 0.03 | 0.01 |
Ca | 1.15 | 2.66 | Sb | 0.02 | 0.02 |
Mg | 0.85 | 1.36 | Cl | 0.01 | 0.01 |
Na | 0.72 | 0.86 | Ni | 0.01 | n.d. |
Pb | 0.24 | 0.25 | Sr | 0.01 | 0.01 |
S | 0.20 | 0.08 | V | 0.01 | 0.01 |
Ti | 0.18 | 0.16 | Co | n.d. | 0.01 |
Cu | 0.14 | 0.29 |
Assignments | CS1 | CS2 | ||
---|---|---|---|---|
Fitting Center (cm−1) | Relative Area (%) | Fitting Center (cm−1) | Relative Area (%) | |
Si-O-Si symmetric stretching | 827 | 7.69 | 825 | 27.12 |
Si-O-4NBO | 873 | 33.07 | 873 | 38.21 |
Si-O-3NBO | 921 | 30.37 | 921 | 9.98 |
Si-O-2NBO | 948 | 5.91 | 953 | 6.65 |
Si-O-1NBO | 1049 | 22.96 | 1051 | 18.04 |
Elements (mg/kg) | Zn | Cu | Fe | Pb |
---|---|---|---|---|
F1 | 47.5 | 1.6 | 4.6 | 0.2 |
Leaching degree (%) | 0.26 | 0.09 | 0.00 | 0.01 |
F2 | 262.5 | 500.0 | 1756.6 | 293.5 |
Leaching degree (%) | 1.41 | 27.09 | 0.48 | 11.37 |
F3 | 2281.8 | 0.0 | 47,780.0 | 62.9 |
Leaching degree (%) | 12.27 | 0.00 | 12.96 | 2.44 |
F4 | 2018.7 | 567.5 | 31,562.5 | 41.4 |
Leaching degree (%) | 10.86 | 30.75 | 8.56 | 1.60 |
F5 | 13,978.7 | 776.3 | 287,577.5 | 2182.3 |
Leaching degree (%) | 75.20 | 42.07 | 78.00 | 84.58 |
Total element content | 18,589.2 | 1845.4 | 368,681.2 | 2580.3 |
Pseudo-total concentrations | 15,619.3 | 1518.9 | 243,351.2 | 1862.1 |
Elements (mg/kg) | Zn | Cu | Fe | Pb |
---|---|---|---|---|
F1 | 2.8 | 8.8 | 5.8 | 0.2 |
Leaching degree (%) | 0.02 | 0.23 | 0.00 | 0.01 |
F2 | 328.3 | 1458.0 | 6554.0 | 83.6 |
Leaching degree (%) | 1.98 | 37.96 | 1.89 | 3.31 |
F3 | 2243.8 | 97.1 | 46,300.0 | 72.0 |
Leaching degree (%) | 13.51 | 2.53 | 13.32 | 2.85 |
F4 | 606.5 | 641.0 | 13,135.0 | 48.3 |
Leaching degree (%) | 3.65 | 16.69 | 3.78 | 1.91 |
F5 | 13,431.5 | 1636.4 | 281,518.0 | 2320.8 |
Leaching degree (%) | 80.85 | 42.60 | 81.01 | 91.92 |
Total element content | 16,612.9 | 3841.3 | 347,512.8 | 2524.9 |
Pseudo-total concentrations | 12,005.5 | 2861.5 | 298,735.8 | 2217.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xu, X.; Guo, L.; Chen, Q.; Qi, C. Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery. Crystals 2024, 14, 420. https://doi.org/10.3390/cryst14050420
Liu Z, Xu X, Guo L, Chen Q, Qi C. Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery. Crystals. 2024; 14(5):420. https://doi.org/10.3390/cryst14050420
Chicago/Turabian StyleLiu, Zirou, Xinhang Xu, Li Guo, Qiusong Chen, and Chongchong Qi. 2024. "Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery" Crystals 14, no. 5: 420. https://doi.org/10.3390/cryst14050420
APA StyleLiu, Z., Xu, X., Guo, L., Chen, Q., & Qi, C. (2024). Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery. Crystals, 14(5), 420. https://doi.org/10.3390/cryst14050420