Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ke, B. Photosynthesis: Photobiochemistry and Photobiophysics; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2001; Volume 10. [Google Scholar]
- Young, I.D.; Ibrahim, M.; Chatterjee, R.; Gul, S.; Fuller, F.; Koroidov, S.; Brewster, A.S.; Tran, R.; Alonso-Mori, R.; Kroll, T.; et al. Structure of Photosystem II and Substrate Binding at Room Temperature. Nature 2016, 540, 453–457. [Google Scholar] [CrossRef]
- Golub, M.; Gätcke, J.; Subramanian, S.; Kölsch, A.; Darwish, T.; Howard, J.K.; Feoktystov, A.; Matsarskaia, O.; Martel, A.; Porcar, L.; et al. “Invisible” Detergents Enable a Reliable Determination of Solution Structures of Native Photosystems by Small-Angle Neutron Scattering. J. Phys. Chem. B 2022, 126, 2824–2833. [Google Scholar] [CrossRef]
- Renger, G. Mechanism of Light Induced Water Splitting in Photosystem II of Oxygen Evolving Photosynthetic Organisms. Biochim. Biophys. Acta 2012, 1817, 1164–1176. [Google Scholar] [CrossRef]
- Henzler-Wildman, K.A.; Lei, M.; Thai, V.; Kerns, S.J.; Karplus, M.; Kern, D. A Hierarchy of Timescales in Protein Dynamics Is Linked to Enzyme Catalysis. Nature 2007, 450, 913–916. [Google Scholar] [CrossRef]
- Hughes, J.L.; Smith, P.; Pace, R.; Krausz, E. Charge Separation in Photosystem II Core Complexes Induced by 690–730 Nm Excitation at 1.7 K. Biochim. Biophys. Acta 2006, 1757, 841–851. [Google Scholar] [CrossRef]
- Joliot, P.; Joliot, A. Different Types of Quenching Involved in Photosystem II Centers. Biochim. Et Biophys. Acta 1973, 305, 202–216. [Google Scholar] [CrossRef]
- Renger, G.; Gleiter, H.M.; Haag, E.; Reifarth, F. Photosystem-II—Thermodynamics and Kinetics of Electron-Transport from Q(a)(-) to Q(B)(Q(B)(-)) and Deleterious Effects of Copper(II). Z. Naturforsch. 1993, 48, 234–240. [Google Scholar] [CrossRef]
- Garbers, A.; Reifarth, F.; Kurreck, J.; Renger, G.; Parak, F. Correlation between Protein Flexibility and Electron Transfer from Qa-* to Qb in PSII Membrane Fragments from Spinach. Biochemistry 1998, 37, 11399–11404. [Google Scholar] [CrossRef]
- Renger, G. Coupling of Electron and Proton Transfer in Oxidative Water Cleavage in Photosynthesis. Biochim. Biophys. Acta 2004, 1655, 195–204. [Google Scholar] [CrossRef]
- Kaminskaya, O.; Renger, G.; Shuvalov, V.A. Effect of Dehydration on Light-Induced Reactions in Photosystem II: Photoreactions of Cytochrome B559. Biochemistry 2003, 42, 8119–8132. [Google Scholar] [CrossRef]
- Noguchi, T.; Sugiura, M. Ftir Detection of Water Reactions During the Flash-Induced S-State Cycle of the Photosynthetic Water-Oxidizing Complex. Biochemistry 2002, 41, 15706–15712. [Google Scholar] [CrossRef]
- Stowell, M.H.; McPhillips, T.M.; Rees, D.C.; Soltis, S.M.; Abresch, E.; Feher, G. Light-Induced Structural Changes in Photosynthetic Reaction Center: Implications for Mechanism of Electron-Proton Transfer. Science 1997, 276, 812–816. [Google Scholar] [CrossRef]
- Baxter, R.H.; Ponomarenko, N.; Srajer, V.; Pahl, R.; Moffat, K.; Norris, J.R. Time-Resolved Crystallographic Studies of Light-Induced Structural Changes in the Photosynthetic Reaction Center. Proc. Natl. Acad. Sci. USA 2004, 101, 5982–5987. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Kozlova, M.A.; Cherepanov, D.A. Ubiquinone Reduction in the Photosynthetic Reaction Centre of Rhodobacter Sphaeroides: Interplay between Electron Transfer, Proton Binding and Flips of the Quinone Ring. Biochem. Soc. Trans. 2005, 33, 845–850. [Google Scholar] [CrossRef]
- Shlyk-Kerner, O.; Samish, I.; Kaftan, D.; Holland, N.; Sai, P.S.; Kless, H.; Scherz, A. Protein Flexibility Acclimatizes Photosynthetic Energy Conversion to the Ambient Temperature. Nature 2006, 442, 827–830. [Google Scholar] [CrossRef]
- Pieper, J.; Hauss, T.; Buchsteiner, A.; Renger, G. The Effect of Hydration on Protein Flexibility in Photosystem II of Green Plants Studied by Quasielastic Neutron Scattering. Eur. Biophys. J. EBJ 2008, 37, 657–663. [Google Scholar] [CrossRef]
- Pieper, J.; Hauss, T.; Buchsteiner, A.; Baczynski, K.; Adamiak, K.; Lechner, R.E.; Renger, G. Temperature- and Hydration-Dependent Protein Dynamics in Photosystem II of Green Plants Studied by Quasielastic Neutron Scattering. Biochemistry 2007, 46, 11398–11409. [Google Scholar] [CrossRef]
- Nagy, G.; Unnep, R.; Zsiros, O.; Tokutsu, R.; Takizawa, K.; Porcar, L.; Moyet, L.; Petroutsos, D.; Garab, G.; Finazzi, G.; et al. Chloroplast Remodeling During State Transitions in Chlamydomonas Reinhardtii as Revealed by Noninvasive Techniques in Vivo. Proc. Natl. Acad. Sci. USA 2014, 111, 5042–5047. [Google Scholar] [CrossRef]
- Sacquin-Mora, S.; Sebban, P.; Derrien, V.; Frick, B.; Lavery, R.; Alba-Simionesco, C. Probing the Flexibility of the Bacterial Reaction Center: The Wild-Type Protein Is More Rigid Than Two Site-Specific Mutants. Biochemistry 2007, 46, 14960–14968. [Google Scholar] [CrossRef]
- Russo, D.; Lambreva, M.D.; Simionesco, C.A.; Sebban, P.; Rea, G. Dynamics Properties of Photosynthetic Microorganisms Probed by Incoherent Neutron Scattering. Biophys. J. 2019, 116, 1759–1768. [Google Scholar] [CrossRef]
- Gabel, F.; Bicout, D.; Lehnert, U.; Tehei, M.; Weik, M.; Zaccai, G. Protein Dynamics Studied by Neutron Scattering. Q. Rev. Biophys. 2002, 35, 327–367. [Google Scholar] [CrossRef] [PubMed]
- Vural, D.; Hu, X.; Lindner, B.; Jain, N.; Miao, Y.; Cheng, X.; Liu, Z.; Hong, L.; Smith, J.C. Quasielastic Neutron Scattering in Biology: Theory and Applications. Biochem. Biophys. Acta 2017, 1861, 3638–3650. [Google Scholar] [CrossRef] [PubMed]
- Grimaldo, M.; Roosen-Runge, F.; Zhang, F.; Schreiber, F.; Seydel, T. Dynamics of Proteins in Solution. Q. Rev. Biophys. 2019, 52, 1–63. [Google Scholar] [CrossRef]
- Smith, J.C. Protein Dynamics—Comparison of Simulations with Inelastic Neutron-Scattering Experiments. Q. Rev. Biophys. 1991, 24, 227–291. [Google Scholar] [CrossRef] [PubMed]
- Kneller, G.R. Quasielastic Neutron Scattering and Relaxation Processes in Proteins: Analytical and Simulation-Based Models. Phys. Chem. Chem. Phys. 2005, 7, 2641–2655. [Google Scholar] [CrossRef] [PubMed]
- Berthold, D.A.; Babcock, G.T.; Yocum, C.F. A Highly Resolved, Oxygen-Evolving Photosystem II Preparation from Spinach Thylakoid Membranes: Epr and Electron-Transport Properties. FEBS Lett. 1981, 138, 231–234. [Google Scholar] [CrossRef]
- Völker, M.; Ono, T.; Inoue, Y.; Renger, G. Effect of Trypsin on Ps-II Particles—Correlation between Hill-Activity, Mn-Abundance and Peptide Pattern. Biochim. Biophys. Acta 1985, 806, 25–34. [Google Scholar] [CrossRef]
- Bee, M. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biological Materials Science; CRC Press: Bristol, UK, 1988. [Google Scholar]
- Singwi, K.S.; Sjölander, A. Diffusive Motions in Water and Cold Neutron Scattering*. Phys. Rev. 1960, 119, 863–871. [Google Scholar] [CrossRef]
- Stadler, A.M.; van Eijck, L.; Demmel, F.; Artmann, G. Macromolecular Dynamics in Red Blood Cells Investigated Using Neutron Spectroscopy. J. R. Soc. Interface 2011, 8, 590–600. [Google Scholar] [CrossRef]
- Stadler, A.M.; Garvey, C.J.; Embs, J.P.; Koza, M.M.; Unruh, T.; Artmann, G.; Zaccai, G. Picosecond Dynamics in Haemoglobin from Different Species: A Quasielastic Neutron Scattering Study. Biochim. Biophys. Acta 2014, 1840, 2989–2999. [Google Scholar] [CrossRef]
- Grimaldo, M.; Roosen-Runge, F.; Hennig, M.; Zanini, F.; Zhang, F.; Jalarvo, N.; Zamponi, M.; Schreiber, F.; Seydel, T. Hierarchical Molecular Dynamics of Bovine Serum Albumin in Concentrated Aqueous Solution Below and above Thermal Denaturation. Phys. Chem. Chem. Phys. 2015, 17, 4645–4655. [Google Scholar] [CrossRef] [PubMed]
- OriginLab Corporation. Originpro 2018; OriginLab Corporation: Northampton, MA, USA, 2018. [Google Scholar]
- Gaspar, A.M.; Appavou, M.S.; Busch, S.; Unruh, T.; Doster, W. Dynamics of Well-Folded and Aatively Disordered Proteins in Solution: A Time-of-Flight Neutron Scattering Study. Eur. Biophys. J. EBJ 2008, 37, 573–582. [Google Scholar] [CrossRef]
- Golub, M.; Moldenhauer, M.; Schmitt, F.J.; Lohstroh, W.; Maksimov, E.G.; Friedrich, T.; Pieper, J. Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein. Part II: Quasielastic Neutron Scattering. J. Phys. Chem. B 2019, 123, 9536–9545. [Google Scholar] [CrossRef] [PubMed]
- Fitter, J.; Lechner, R.E.; Dencher, N.A. Interactions of Hydration Water and Biological Membranes Studied by Neutron Scattering. J. Phys. Chem. B 1999, 103, 8036–8050. [Google Scholar] [CrossRef]
- Frauenfelder, H.; Chen, G.; Berendzen, J.; Fenimore, P.W.; Jansson, H.; McMahon, B.H.; Stroe, I.R.; Swenson, J.; Young, R.D. A Unified Model of Protein Dynamic. Proc. Natl. Acad. Sci. USA 2009, 106, 5129–5134. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.H.; Curtis, J.E.; Azzam, S.; Novikov, V.N.; Peral, I.; Chowdhuri, Z.; Gregory, R.B.; Sokolov, A.P. Influence of Hydration on the Dynamics of Lysozyme. Biophys. J. 2006, 91, 2573–2588. [Google Scholar] [CrossRef]
- Schiro, G.; Caronna, C.; Natali, F.; Cupane, A. Direct Evidence of the Amino Acid Side Chain and Backbone Contributions to Protein Anharmonicity. J. Am. Chem. Soc. 2010, 132, 1371–1376. [Google Scholar] [CrossRef]
- Wanderlingh, U.; D’Angelo, G.; Branca, C.; Nibali, V.C.; Trimarchi, A.; Rifici, S.; Finocchiaro, D.; Crupi, C.; Ollivier, J.; Middendorf, H.D. Multi-Component Modeling of Quasielastic Neutron Scattering from Phospholipid Membranes. J. Chem. Phys. 2014, 140, 174901. [Google Scholar] [CrossRef] [PubMed]
- Stadler, A.M.; Knieps-Grunhagen, E.; Bocola, M.; Lohstroh, W.; Zamponi, M.; Krauss, U. Photoactivation Reduces Side-Chain Dynamics of a Lov Photoreceptor. Biophys. J. 2016, 110, 1064–1074. [Google Scholar] [CrossRef]
- Doster, W.; Cusack, S.; Petry, W. Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering. Nature 1989, 337, 754–756. [Google Scholar] [CrossRef]
- Lehnert, U.; Reat, V.; Weik, M.; Zaccai, G.; Pfister, C. Thermal Motions in Bacteriorhodopsin at Different Hydration Levels Studied by Neutron Scattering: Correlation with Kinetics and Light-Induced Conformational Changes. Biophys. J. 1998, 75, 1945–1952. [Google Scholar] [CrossRef]
- Aoun, B.; Pellegrini, E.; Trapp, M.; Natali, F.; Cantu, L.; Brocca, P.; Gerelli, Y.; Deme, B.; Marek Koza, M.; Johnson, M.; et al. Direct Comparison of Elastic Incoherent Neutron Scattering Experiments with Molecular Dynamics Simulations of Dmpc Phase Transitions. Eur. Phys. J. E Soft Matter Biol. Phys. 2016, 39, 48. [Google Scholar] [CrossRef] [PubMed]
- Pieper, J.; Trapp, M.; Skomorokhov, A.; Natkaniec, I.; Peters, J.; Renger, G. Temperature-Dependent Vibrational and Conformational Dynamics of Photosystem II Membrane Fragments from Spinach Investigated by Elastic and Inelastic Neutron Scattering. Biochem. Biophys. Acta 2012, 1817, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Golub, M.; Rusevich, L.; Irrgang, K.D.; Pieper, J. Rigid Versus Flexible Protein Matrix: Light-Harvesting Complex II Exhibits a Temperature-Dependent Phonon Spectral Density. J. Phys. Chem. B 2018, 122, 7111–7121. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, S.; Pawlus, S.; Sokolov, A.P. Influence of Hydration on Protein Dynamics: Combining Dielectric and Neutron Scattering Spectroscopy Data. J. Phys. Chem. B 2008, 112, 14273–14280. [Google Scholar] [CrossRef]
- Roh, J.H.; Novikov, V.N.; Gregory, R.B.; Curtis, J.E.; Chowdhuri, Z.; Sokolov, A.P. Onsets of Anharmonicity in Protein Dynamics. Phys. Rev. Lett. 2005, 95, 038101. [Google Scholar] [CrossRef]
- Curtis, J.E.; McAuley, A.; Nanda, H.; Krueger, S. Protein Structure and Interactions in the Solid State Studied by Small-Angle Neutron Scattering. Faraday Discuss. 2012, 158, 285–299; discussion 351–270. [Google Scholar] [CrossRef]
- Curtis, J.E.; Nanda, H.; Khodadadi, S.; Cicerone, M.; Lee, H.J.; McAuley, A.; Krueger, S. Small-Angle Neutron Scattering Study of Protein Crowding in Liquid and Solid Phases: Lysozyme in Aqueous Solution, Frozen Solution, and Carbohydrate Powders. J. Phys. Chem. B 2012, 116, 9653–9667. [Google Scholar] [CrossRef]
- Roosen-Runge, F.; Hennig, M.; Zhang, F.; Jacobs, R.M.; Sztucki, M.; Schober, H.; Seydel, T.; Schreiber, F. Protein Self-Diffusion in Crowded Solutions. Proc. Natl. Acad. Sci. USA 2011, 108, 11815–11820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golub, M.; Koppel, M.; Pikma, P.; Frick, B.; Pieper, J. Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution. Crystals 2023, 13, 1441. https://doi.org/10.3390/cryst13101441
Golub M, Koppel M, Pikma P, Frick B, Pieper J. Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution. Crystals. 2023; 13(10):1441. https://doi.org/10.3390/cryst13101441
Chicago/Turabian StyleGolub, Maksym, Miriam Koppel, Piret Pikma, Bernhard Frick, and Jörg Pieper. 2023. "Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution" Crystals 13, no. 10: 1441. https://doi.org/10.3390/cryst13101441
APA StyleGolub, M., Koppel, M., Pikma, P., Frick, B., & Pieper, J. (2023). Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution. Crystals, 13(10), 1441. https://doi.org/10.3390/cryst13101441