Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Multi-Block Thermoplastic Polyurethane (TPU)
2.3. Characterization
3. Results
3.1. Thermal Stability Analysis of the Synthesized TPUs via TGA
3.2. Thermal Transitions and Crystallization Kinetics of TPUs
3.3. Crystal Structure and Phase Composition of TPUs
3.4. Study of Phase Separation in TPUs Using FTIR Analysis
3.5. Mechanical Properties of the TPUs
Tensile Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorbunova, M.A.; Anokhin, D.V.; Badamshina, E.R. Recent Advances in the Synthesis and Application of Thermoplastic Semicrystalline Shape Memory Polyurethanes. Polym. Sci. Ser. B 2020, 62, 427–450. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lee, S.; Park, J.; Shin, E.J. Synthesis of Novel Shape Memory Thermoplastic Polyurethanes (SMTPUs) from Bio-Based Materials for Application in 3D/4D Printing Filaments. Materials 2023, 16, 1072. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhou, X.; Ma, Y.; Yi, G.; Cheng, X.; Zhu, Y.; Zu, X.; Zhang, N.; Huang, B.; Yu, L. Shape Memory-Based Tunable Resistivity of Polymer Composites. Appl. Surf. Sci. 2016, 363, 59–65. [Google Scholar] [CrossRef]
- Schönfeld, D.; Chalissery, D.; Wenz, F.; Specht, M.; Eberl, C.; Pretsch, T. Actuating Shape Memory Polymer for Thermoresponsive Soft Robotic Gripper and Programmable Materials. Molecules 2021, 26, 522. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Fang, L.; Noechel, U.; Kratz, K.; Lendlein, A. Influence of Deformation Temperature on Structural Variation and Shape-Memory Effect of a Thermoplastic Semi-Crystalline Multiblock Copolymer. Express Polym. Lett. 2015, 9, 624–635. [Google Scholar] [CrossRef]
- Cheng, B.-X.; Gao, W.-C.; Ren, X.-M.; Ouyang, X.-Y.; Zhao, Y.; Zhao, H.; Wu, W.; Huang, C.-X.; Liu, Y.; Liu, X.-Y.; et al. A Review of Microphase Separation of Polyurethane: Characterization and Applications. Polym. Test. 2022, 107, 107489. [Google Scholar] [CrossRef]
- Muscas, F.; Sessini, V.; Peponi, L.; López, A.J.; Ureña, A.; Navarro, R.; Marcos-Fernández, Á. Supramolecular Polycaprolactone-Based Polyurethanes with Thermally Activated Shape-Memory Behavior. Polymers 2022, 14, 3447. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yang, Y.; Chen, T.; Wong, T.-W.; Li, J.; Yan, G.; Bai, R.; Wang, L. Reproducible, Self-Healable Polyurethane Composite Networks with High Toughness, Florescence and Water-Insensitivity. J. Sci. Adv. Mater. Devices 2023, 8, 100543. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; Ning, Z.; Yang, B.; Zeng, Y. Sustainable Polyurethane Networks Based on Rosin with Reprocessing Performance. Polymers 2021, 13, 3538. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-K.; Zhao, Y.; Wang, R.; Luo, F.; Li, J.-S.; Li, J.-H.; Tan, H. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes. Chin. J. Polym. Sci. 2018, 36, 514–520. [Google Scholar] [CrossRef]
- Sahebi Jouibari, I.; Haddadi-Asl, V.; Mirhosseini, M.M. Effect of Nanofiller Content and Confined Crystallization on the Microphase Separation Kinetics of Polyurethane Nanocomposites. Polym. Compos. 2019, 40, E422–E430. [Google Scholar] [CrossRef]
- Shokrolahi, F.; Yeganeh, H. Soft Segment Composition and Its Influence on Phase-Separated Morphology of PCL/PEG-Based Poly(Urethane Urea)S. Iran. Polym. J. 2014, 23, 505–512. [Google Scholar] [CrossRef]
- Ziegler, W.; Guttmann, P.; Kopeinig, S.; Dietrich, M.; Amirosanloo, S.; Riess, G.; Kern, W. Influence of Different Polyol Segments on the Crystallisation Behavior of Polyurethane Elastomers Measured with DSC and DMA Experiments. Polym. Test. 2018, 71, 18–26. [Google Scholar] [CrossRef]
- Li, L.; Huang, Q.; Li, H.; Sun, X.; Yan, S. Effect of Hydrogen Bonding Strength on the Morphology and Polymorphism of Poly(butylene adipate). Polym. Cryst. 2020, 3, pcr210108. [Google Scholar] [CrossRef]
- Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Metastability and Transformation of Polymorphic Crystals in Biodegradable Poly(butylene adipate). Biomacromolecules. 2004, 5, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Ye, H.M.; Xu, J.; Hou, K.; Zhou, Q.; Lu, G.W. Stretch-Induced Bidirectional Polymorphic Transformation of Crystals in Poly(butylene adipate). Polymer 2014, 55, 3054–3061. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Li, L.; Gan, Z. Structural Analysis of Poly(butylene adipate) Banded Spherulites from Their Biodegradation Behavior. Polymer 2007, 48, 6152–6161. [Google Scholar] [CrossRef]
- Fuensanta, M.; Martín-Martínez, J.M. Structural and Viscoelastic Properties of Thermoplastic Polyurethanes Containing Mixed Soft Segments with Potential Application as Pressure Sensitive Adhesives. Polymers 2021, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Anokhin, D.V.; Gorbunova, M.A.; Abukaev, A.F.; Ivanov, D.A. Multiblock Thermoplastic Polyurethanes: In Situ Studies of Structural and Morphological Evolution under Strain. Materials 2021, 14, 3009. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, A.E.; Lodygina, V.P.; Komratova, V.V.; Gorbunova, M.A.; Badamshina, E.R. New IR-Spectroscopic Methods for Determining the Hydroxyl Content in Oligomers. J. Appl. Spectrosc. 2017, 84, 211–216. [Google Scholar] [CrossRef]
- Gorbunova, M.A.; Anokhin, D.V.; Abukaev, A.F.; Ivanov, D.A. The Influence of Long-Time Storage on the Structure and Properties of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol. Materials 2023, 16, 818. [Google Scholar] [CrossRef]
- Long, Y.; Shanks, R.A.; Stachurski, Z.H. Kinetics of Polymer Crystallisation. Prog. Polym. Sci. 1995, 20, 651–701. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Odegard, G.M.; Bandyopadhyay, A. Physical Aging of Epoxy Polymers and Their Composites. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1695–1716. [Google Scholar] [CrossRef]
- Alamo, R.G.; Mandelkern, L. Crystallization Kinetics of Random Ethylene Copolymers. Macromolecules 1991, 24, 6480–6493. [Google Scholar] [CrossRef]
- Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Structural Studies of Polyesters. III. Crystal Structure of Poly-ε-Caprolactone. Polym. J. 1970, 1, 555–562. [Google Scholar] [CrossRef]
- Ciobanu, L.C.; Ciobanu, C.; Dorohoi, D. ATR-FTIR Studies of the Temperature Effects on Polyurethane Doped with Silver Nanoparticles. High Perform. Polym. 2010, 22, 56–68. [Google Scholar] [CrossRef]
- Yilgor, I.; Yilgor, E.; Guler, I.G.; Ward, T.C.; Wilkes, G.L. FTIR Investigation of the Influence of Diisocyanate Symmetry on the Morphology Development in Model Segmented Polyurethanes. Polymer. 2006, 47, 4105–4114. [Google Scholar] [CrossRef]
- Niemczyk, A.; Piegat, A.; Sonseca Olalla, Á.; El Fray, M. New Approach to Evaluate Microphase Separation in Segmented Polyurethanes Containing Carbonate Macrodiol. Eur. Polym. J. 2017, 93, 182–191. [Google Scholar] [CrossRef]
N° | Sample | Polymer Composition | SS, % | Mass Fraction of Reagents, % | SS/HS | HS,% | ||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | Poly Diol | Diisocyanate | Chain Extender | ||||
1 | TPU-1(0/100) | - | PCL | 0 | 100 | 69 | 23 | 8 | 2.2 | 31 |
2 | TPU-2(50/50) | PBA | PCL | 50 | 50 | 69 | 23 | 8 | 2.2 | 31 |
3 | TPU-3(80/20) | PBA | PCL | 80 | 20 | 69 | 23 | 8 | 2.2 | 31 |
4 | TPU-4(100/0) | PBA | - | 100 | 0 | 69 | 23 | 8 | 2.2 | 31 |
Sample | PBA/PCL,% | DTGmax, °C | T(5%), °C | T(10%), °C | T(50%), °C | T(80%), °C | T(endset), °C | Residual Weight, % |
---|---|---|---|---|---|---|---|---|
PCL | - | 370/417 | 302 | 318 | 367 | 396 | 463 | - |
TPU-1(0/100) | 0/100 | 345/436 | 275 | 293 | 337 | 355 | 477 | - |
TPU-2(50/50) | 50/50 | 351/394/447 | 288 | 311 | 365 | 403 | 550 | 3.6 |
TPU-3(80/20) | 80/20 | 360/406/449 | 293 | 315 | 375 | 411 | 550 | 2.9 |
TPU-4(100/0) | 100/0 | 361/407/449 | 294 | 320 | 379 | 413 | 550 | 4.2 |
PBA | - | 413 | 316 | 360 | 407 | 398 | 439 | - |
Sample | PBA/PCL | Tg, °C | Tc, °C | Tonset, °C | Tmax, °C | ∆Hm, J/g | ΧcPBA, % | ΧcPCL, % |
---|---|---|---|---|---|---|---|---|
TPU-1(0/100) | 0/100 | −51 | 25 | 38 | 48 | 21.4 | - | 10 |
−51 | −5 | 40 | 47 | 23.8 | - | 12 | ||
TPU-2(50/50) | 50/50 | −49 | 25 | 40/52 | 46/61 | 1.1/1.9 | 2 | 0.5 |
−49 | −5 | 42/54 | 48/64 | 17.9/0.9 | 1 | 13 | ||
TPU-3(80/20) | 80/20 | −49 | 25 | 39/49 | 43/54 | 2.7/19.2 | 20 | 1 |
−49 | −5 | 41/44 | 48/55 | 7.9/14.2 | 15 | 4 | ||
TPU-4(100/0) | 100/0 | −48 | 25 | 43 | 51 | 30.4 | 31 | - |
−48 | −5 | 42/49 | 49/55 | 5.8/17.6 | 25 | - |
Tc, °C | ΧWAXS, % | PCL or β-PBA | α-PBA | D, nm | |||
---|---|---|---|---|---|---|---|
Χ, % | d(110), Å | Χ, % | d(110), Å | d(020), Å | |||
TPU-1(0/100) | |||||||
25 | 12 | 12 | 4.18 | - | - | - | 14 |
−5 | 16 | 16 | 4.25 | - | - | - | 17 |
TPU-2(50/50) | |||||||
25 | 6 | - | - | - | 4.01 | 3.87 | - |
−5 | 11 | - | - | - | 4.03 | 3.85 | - |
TPU-3(80/20) | |||||||
25 | 12 | - | - | 12 | 4.09 | 3.96 | 20 |
−5 | 18 | 2 | 4.16 | 16 | 4.07 | 3.95 | 23 (PBA) 24 (PCL) |
TPU-4(100/0) | |||||||
25 | 17 | - | - | 25 | 4.09 | 3.97 | 19 |
−5 | 20 | 5 | 4.18 | 15 | 4.10 | 3.98 | 18 (α) 13 (β) |
Sample | Young’s Modulus (MPa) | Tensile Strength at Break (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Tensile Strength at Break (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|
Tc = 25 °C | Tc = −5 °C | |||||
TPU-1(0/100) | 8.4 ± 0.9 | 34.3 ± 1.5 | 1270 ± 40 | 38.8 ± 0.9 | 39.5 ± 1.3 | 1040 ± 20 |
TPU-2(50/50) | 3.6 ± 0.1 | 23.9 ± 0.2 | 1295 ± 38 | 11.5 ± 0.4 | 32.8 ± 1.5 | 1140 ± 40 |
TPU-3(80/20) | 25.0 ± 2.1 | 24.5 ± 0.5 | 1180 ± 30 | 24.7 ± 0.8 | 25.8 ± 1.8 | 1170 ± 30 |
TPU-4(100/0) | 107 ± 3.7 | 25.3 ± 0.9 | 990 ± 60 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbunova, M.; Anokhin, D.V.; Abukaev, A.; Ivanov, D. Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol. Crystals 2023, 13, 1447. https://doi.org/10.3390/cryst13101447
Gorbunova M, Anokhin DV, Abukaev A, Ivanov D. Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol. Crystals. 2023; 13(10):1447. https://doi.org/10.3390/cryst13101447
Chicago/Turabian StyleGorbunova, Marina, Denis V. Anokhin, Ainur Abukaev, and Dimitri Ivanov. 2023. "Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol" Crystals 13, no. 10: 1447. https://doi.org/10.3390/cryst13101447
APA StyleGorbunova, M., Anokhin, D. V., Abukaev, A., & Ivanov, D. (2023). Impact of Soft Segment Composition on Phase Separation and Crystallization of Multi-Block Thermoplastic Polyurethanes Based on Poly(butylene adipate) Diol and Polycaprolactone Diol. Crystals, 13(10), 1447. https://doi.org/10.3390/cryst13101447