Effects of Stress State, Crack—γ/γ′ Phase Interface Relative Locations and Orientations on the Deformation and Crack Propagation Behaviors of the Ni-Based Superalloy—A Molecular Dynamics Study
Abstract
:1. Introduction
2. Simulation Method and Details
2.1. Simulation Method and Model
2.2. The Interatomic Pairwise Interaction Potentials
2.3. The Analysis Method of the Microstructure and the Stress Definition
3. Results and Discussions
3.1. The Effect of Stress States on the Deformation and Crack Propagation Behaviors
3.1.1. The Deformation Behaviors
3.1.2. The Crack Length—Cyclic Numbers Relationship
3.1.3. The Microstructure Evolution and Dislocations Density Analysis
3.2. The Effect of Crack Locations on the Deformation and Crack Propagation Behaviors
3.2.1. The Deformation Behaviors
3.2.2. The Crack Length—Cyclic Numbers Relationship
3.2.3. The Microstructure Evolution and Dislocation Density Analysis
3.3. The Effect of Crack Orientations on the Deformation and Crack Propagation Behaviors
3.3.1. The Deformation Behaviors
3.3.2. The Crack Length—Cyclic Numbers Relationship
3.3.3. The Microstructure Evolution and Dislocation Density Analysis
4. Conclusions
- With the change in stress state from low stress triaxiality to high stress triaxiality, there is a shift in deformation behavior and crack propagation mode from ductile behavior to brittle behavior.
- The deformation system with cracks located in both the γ and γ′ phase exhibits the slowest growth rate under any applied stress states, while demonstrating obvious plastic behavior during the deformation.
- For the deformation system with a crack perpendicular to the γ/γ′ phase interface, the γ/γ′ phase interface will hinder the crack propagation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Miao, J.; Pollock, T.M.; Wayne Jones, J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater. 2009, 57, 5964–5974. [Google Scholar] [CrossRef]
- Pineau, A.; Antolovich, S.D. High temperature fatigue of nickel-base superalloys—A review with special emphasis on deformation modes and oxidation. Eng. Fail. Anal. 2009, 16, 2668–2697. [Google Scholar] [CrossRef]
- Texier, D.; Stinville, J.-C.; Echlin, M.P.; Pierret, S.; Villechaise, P.; Pollock, T.M.; Cormier, J. Short crack propagation from cracked non-metallic inclusions in a Ni-based polycrystalline superalloy. Acta Mater. 2019, 165, 241–258. [Google Scholar] [CrossRef]
- Andrew, D.L.; Carlson, S.S.; Macha, J.H.; Pilarczyk, R.T. Investigating and interpreting failure analysis of high strength nuts made from nickel-base superalloy. Eng. Fail. Anal. 2017, 74, 35–53. [Google Scholar] [CrossRef]
- Qin, X.; Liang, Y.; Gu, J.; Peng, G. The Effect of Interatomic Potentials on the Nature of Nanohole Propagation in Single-Crystal Nickel: A Molecular Dynamics Simulation Study. Crystals 2023, 13, 585. [Google Scholar] [CrossRef]
- Guin, L.; Raphanel, J.L.; Kysar, J.W. Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene. J. Appl. Phys. 2016, 119, 245107. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. Mechanisms of crack propagation in nanoscale single crystal, bicrystal and tricrystal nickels based on molecular dynamics simulation. Results Phys. 2017, 7, 1722–1733. [Google Scholar] [CrossRef]
- Elapolu, M.S.R.; Tabarraei, A. Atomistic Simulation-Based Cohesive Zone Law of Hydrogenated Grain Boundaries of Graphene. J. Phys. Chem. C 2020, 124, 17308–17319. [Google Scholar] [CrossRef]
- Elapolu, M.S.R.; Tabarraei, A. Mechanical and Fracture Properties of Polycrystalline Graphene with Hydrogenated Grain Boundaries. J. Phys. Chem. C 2021, 125, 11147–11158. [Google Scholar] [CrossRef]
- Wu, W.-P.; Yao, Z.-Z. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel. Theor. Appl. Fract. Mech. 2012, 62, 67–75. [Google Scholar] [CrossRef]
- Zhang, J.; Ghosh, S. Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. J. Mech. Phys. Solids 2013, 61, 1670–1690. [Google Scholar] [CrossRef]
- Chang, L.; Kitamura, T.; Zhou, C.-Y. Atomic simulation of the orientation effects on crack tip behavior in titanium single crystal. Theor. Appl. Fract. Mech. 2020, 110, 102791. [Google Scholar] [CrossRef]
- Fang, W.; Xie, H.; Yin, F.; Li, J.; Khan, D.F.; Fang, Q. Molecular dynamics simulation of grain boundary geometry on crack propagation of bi-crystal aluminum. Mater. Sci. Eng. A 2016, 666, 314–319. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (0 1 0) twist boundary. Eng. Fract. Mech. 2016, 168, 147–159. [Google Scholar] [CrossRef]
- Moverare, J.J.; Gustafsson, D. Hold-time effect on the thermo-mechanical fatigue crack growth behaviour of Inconel 718. Mater. Sci. Eng. A 2011, 528, 8660–8670. [Google Scholar] [CrossRef]
- Prasad, K.; Sarkar, R.; Ghosal, P.; Kumar, V. Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy. Mater. Sci. Eng. A 2013, 572, 1–7. [Google Scholar] [CrossRef]
- Mahobia, G.S.; Paulose, N.; Mannan, S.L.; Sudhakar, R.G.; Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, V. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. Int. J. Fatigue 2014, 59, 272–281. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, S.; Deng, H.; Hu, W. Tensile mechanical properties of Ni-based superalloy of nanophases using molecular dynamics simulation. Phys. Status Solidi 2016, 253, 726–732. [Google Scholar] [CrossRef]
- Shang, J.; Yang, F.; Li, C.; Wei, N.; Tan, X. Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation. Comput. Mater. Sci. 2018, 148, 200–206. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.M.; Liang, H.; Zhao, Z.N.; Li, L.; Yue, Z.F.; Deng, C.H. The effect of void defect on the evolution mechanisms of dislocations and mechanical properties in nickel-based superalloys by molecular dynamics simulation of real γ/γ′ structures. Int. J. Solids Struct. 2020, 191–192, 464–472. [Google Scholar] [CrossRef]
- Cui, C.; Gong, X.; Chen, L.; Xu, W.; Chen, L. Atomic-scale investigations on dislocation-precipitate interactions influenced by voids in Ni-based superalloys. Int. J. Mech. Sci. 2022, 216, 106945. [Google Scholar] [CrossRef]
- Peng, X.; Liang, Y.; Qin, X.; Gu, J. The effect of ultrasonic surface rolling process on tension-tension fatigue limit of small diameter specimens of Inconel 718 superalloy. Int. J. Fatigue 2022, 162, 106964. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ′t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Tuckerman, M.E.; Alejandre, J.; López-Rendón, R.; Jochim, A.L.; Martyna, G.J. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble. J. Phys. A Math. Gen. 2006, 39, 5629. [Google Scholar] [CrossRef]
- Purja Pun, G.P.; Mishin, Y. Development of an interatomic potential for the Ni-Al system. Philos. Mag. 2009, 89, 3245–3267. [Google Scholar] [CrossRef]
- Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Faken, D.; Jónsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 1994, 2, 279–286. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Xu, S.; Deng, X. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal. Nanotechnology 2008, 19, 115705. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.W.; Johnson, R.A.; Wadley, H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 2004, 69, 144113. [Google Scholar] [CrossRef]
- Černý, M.; Pokluda, J. Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles. Phys. Rev. B 2010, 82, 174106. [Google Scholar] [CrossRef]
- Pei, L.; Lu, C.; Tieu, K.; Zhao, X.; Zhang, L.; Cheng, K. Ductile-to-brittle fracture transition in polycrystalline nickel under tensile hydrostatic stress. Comput. Mater. Sci. 2015, 109, 147–156. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, G.; Luo, G.; Sun, X.; Zhao, J. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates. Phys. Lett. A 2016, 380, 2674–2677. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Zhang, G.; Zhang, Y.; Yang, Z. Molecular dynamics simulations of single crystal copper nanocubes under triaxial tensile loading. Comput. Mater. Sci. 2017, 138, 377–383. [Google Scholar] [CrossRef]
Stress States | X Direction | Y and Z Direction | |
---|---|---|---|
NO. 1 | loading | +1 × 10−3 ps−1 | −3 × 10−4 ps−1 |
unloading | −1 × 10−3 ps−1 | +3 × 10−4 ps−1 | |
NO. 2 | loading | +1 × 10−3 ps−1 | −2 × 10−4 ps−1 |
unloading | −1 × 10−3 ps−1 | +2 × 10−4 ps−1 | |
NO. 3 | loading | +1 × 10−3 ps−1 | 0 |
unloading | −1 × 10−3 ps−1 | 0 | |
NO. 4 | loading | +1 × 10−3 ps−1 | +1 × 10−4 ps−1 |
unloading | −1 × 10−3 ps−1 | −1 × 10−4 ps−1 |
Parameter | Value |
---|---|
10,000 | |
0.5013228884 × 10−3 | |
10,000 | |
0.62872 × 10−3 | |
cutoff | 6.28721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Liang, Y.; Gu, J. Effects of Stress State, Crack—γ/γ′ Phase Interface Relative Locations and Orientations on the Deformation and Crack Propagation Behaviors of the Ni-Based Superalloy—A Molecular Dynamics Study. Crystals 2023, 13, 1446. https://doi.org/10.3390/cryst13101446
Qin X, Liang Y, Gu J. Effects of Stress State, Crack—γ/γ′ Phase Interface Relative Locations and Orientations on the Deformation and Crack Propagation Behaviors of the Ni-Based Superalloy—A Molecular Dynamics Study. Crystals. 2023; 13(10):1446. https://doi.org/10.3390/cryst13101446
Chicago/Turabian StyleQin, Xinmao, Yilong Liang, and Jiabao Gu. 2023. "Effects of Stress State, Crack—γ/γ′ Phase Interface Relative Locations and Orientations on the Deformation and Crack Propagation Behaviors of the Ni-Based Superalloy—A Molecular Dynamics Study" Crystals 13, no. 10: 1446. https://doi.org/10.3390/cryst13101446
APA StyleQin, X., Liang, Y., & Gu, J. (2023). Effects of Stress State, Crack—γ/γ′ Phase Interface Relative Locations and Orientations on the Deformation and Crack Propagation Behaviors of the Ni-Based Superalloy—A Molecular Dynamics Study. Crystals, 13(10), 1446. https://doi.org/10.3390/cryst13101446