Overlooked Solid State Structure of 1,3-I2C6F4—The Meta-Member of an Iconic Halogen Bond Donors Trio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystallization of 1,3-DITFB
2.2. Computational Details
2.2.1. Intermolecular Interactions and Lattice Energy
2.2.2. MEP
2.3. Single Crystal X-ray Crystallography
3. Results and Discussion
3.1. Crystal Preparation and Molecular Structure of 1,3-DITFB
3.2. Intermolecular Interactions Energy in the XB-Assisted Co-Crystals of 1,3-DITFB
3.3. Crystal Habit and Energy Frameworks of 1,3-DITFB Native Crystal
3.4. Molecular Symmetry and Melting Point
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Their geometry (see Table A1).
- F···C (green dashed lines) and I···Cl (red dashed lines) contacts and their energy (total intermolecular interaction energy, CE-B3LYP/DGDZVP, kJ/mol)
Contact | Distance (d), Å | d Normalized to vdW Radii Sum * d-Σ(vdW Radii)/Σ(vdW Radii) |
---|---|---|
F1···C6 | 3.29 | −0.03801 |
F1···C5 | 3.1 | −0.09357 |
F1···C4 | 3.29 | −0.03801 |
F2···I1 | 3.97 | +0.067204 |
F4···I2 | 3.97 | +0.067204 |
F3···C1 | 3.29 | −0.03801 |
F3···C2 | 3.02 | −0.11696 |
F3···C3 | 3.29 | −0.03801 |
F4···I2 | 4.4 | +0.182796 |
F2···I1 | 4.4 | +0.182796 |
- Their geometry (see Table A2)
- F···C (green dashed lines) and I···Cl (red dashed lines) contacts and their energy (total intermolecular interaction energy, CE-B3LYP/DGDZVP, kJ/mol)
Contact | Distance (d), Å | d Normalized to vdW Radii Sum * d-Σ(vdW Radii)/Σ(vdW Radii) |
---|---|---|
F3···C2 | 3.17 | −0.0731 |
F1···C5 | 3.15 | −0.07895 |
F2···I2 | 3.69 | −0.00806 |
F4···I1 | 3.69 | −0.00806 |
N | Symop | R | Electron Density | E_ele | E_pol | E_dis | E_rep | E_tot |
---|---|---|---|---|---|---|---|---|
2 | x + 1/2, −y + 1/2, −z + 1/2 | 4.7 | B3LYP/DGDZVP | −11.4 | −0.5 | −29.4 | 23.1 | −23.7 |
4 | −x + 1/2, −y, z + 1/2 | 9.19 | B3LYP/DGDZVP | −7.5 | −0.5 | −9.3 | 15.3 | −6.9 |
2 | x + 1/2, −y + 1/2, −z + 1/2 | 6.45 | B3LYP/DGDZVP | −4.2 | −0.5 | −16.2 | 9 | −13.4 |
2 | x, y, z | 5.91 | B3LYP/DGDZVP | −9.4 | −0.5 | −22.7 | 16.7 | −19.7 |
2 | −x, −y, −z | 9.90 | B3LYP/DGDZVP | −0.1 | 0 | −2.5 | 0.5 | −1.9 |
2 | −x, −y, −z | 9.09 | B3LYP/DGDZVP | −2.9 | −0.2 | −8.2 | 6.1 | −6.6 |
Energy Model | k_ele | k_pol | k_disp | k_rep |
---|---|---|---|---|
CE-B3LYP/6-31G(d,p) | 1.057 | 0.74 | 0.871 | 0.618 |
Compound | ∆Hsublimation Experimental [63] | Elattice Calculated in This Work (B3LYP/DGDZVP) |
---|---|---|
1,4-C6H4Cl2 | 64.8 at 298 K [63] 65.2 at 313 K [64] 56.9 at 304 K [64] | −58.3 |
1,4-C6H4Br2 | 73.3 at 313 K [65] 74.5 at 298 K [63,66] | −74.5 |
1,4-C6H4I2 | 63.4 at 386 K [65] ** 85.4 at 298 K [63,66] | −83.7 |
Compound | Melting Point m.p. °C |
---|---|
1,2-C6H4Cl2 | −17 |
1,3-C6H4Cl2 | −24 |
1,4-C6H4Cl2 | 53 |
1,2-C6H4Br2 | 7 |
1,3-C6H4Br2 | −7 |
1,4-C6H4Br2 | 87 |
1,2 C6H4I2 | 27 |
1,3 C6H4I2 | 35 |
1,4 C6H4I2 | 130 |
1,2-xylene | −25 |
1,3-xylene | −47 |
1,4-xylene | 14 |
References
- Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2008, 47, 6114–6127. [Google Scholar] [CrossRef] [PubMed]
- Bedeković, N.; Fotović, L.; Stilinović, V.; Cinčić, D. Conservation of the Hydrogen-Bonded Pyridone Homosynthon in Halogen-Bonded Cocrystals. Cryst. Growth Des. 2022, 22, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Torubaev, Y.; Skabitskiy, I. Carbon-atom hybridization tunes the halogen-bond strength in the series of DABCO.C2H2nI2 (n = 0–2) cocrystals. Acta Crystallogr. C Struct. Chem. 2022, 78, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Resnati, G.; Pilati, T.; Liantonio, R.; Meyer, F. Engineering functional materials by halogen bonding. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 1–15. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Spartz, C.L. Halogen bonding in supramolecular synthesis. Top. Curr. Chem. 2015, 358, 155–182. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Baldrighi, M.; Desper, J.; Metrangolo, P.; Resnati, G. Supramolecular hierarchy among halogen-bond donors. Chemistry 2013, 19, 16240–16247. [Google Scholar] [CrossRef] [PubMed]
- Bedeković, N.; Stilinović, V.; Friščić, T.; Cinčić, D. Comparison of isomeric meta- and para-diiodotetrafluorobenzene as halogen bond donors in crystal engineering. New J. Chem. 2018, 42, 10584–10591. [Google Scholar] [CrossRef]
- Gavezzotti, A. Molecular symmetry, melting temperatures and melting enthalpies of substituted benzenes and naphthalenes. J. Chem. Soc. Perkin Trans. 1995, 2, 1399–1404. [Google Scholar] [CrossRef]
- Dziubek, K.F.; Katrusiak, A. Structure-melting relations in isomeric dibromobenzenes. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 492–497. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Brown, R.F.C. Melting Point and Molecular Symmetry. J. Chem. Educ. 2000, 77, 724. [Google Scholar] [CrossRef]
- Yalkowsky, S.H. Carnelley’s rule and the prediction of melting point. J. Pharm. Sci. 2014, 103, 2629–2634. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2017, 8, e1327. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 3297. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Metz, B.; Stoll, H.; Dolg, M. Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 2000, 113, 2563–2569. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Lenthe, E.v.; Baerends, E.J.; Snijders, J.G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610. [Google Scholar] [CrossRef]
- van Wüllen, C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998, 109, 392–399. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Rolfes, J.D.; Neese, F.; Pantazis, D.A. All-electron scalar relativistic basis sets for the elements Rb-Xe. J. Comput. Chem. 2020, 41, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Izsák, R.; Neese, F. An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011, 135, 144105. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, D.A.; Neese, F. All-Electron Scalar Relativistic Basis Sets for the Lanthanides. J. Chem. Theory Comput. 2009, 5, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, A. VisMap. Available online: https://github.com/aaan1s/VisMap (accessed on 12 March 2022).
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Chernyshov, I.Y.; Ananyev, I.V.; Pidko, E.A. Revisiting van der Waals Radii: From Comprehensive Structural Analysis to Knowledge-Based Classification of Interatomic Contacts. Chemphyschem 2020, 21, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Parthasarathy, R. The nature of halogen---halogen interactions: Are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J. Am. Chem. Soc. 1989, 111, 8725–8726. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Type II halogen...halogen contacts are halogen bonds. IUCrJ 2014, 1, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Guijarro, A.; Vergés, J.A.; San-Fabián, E.; Chiappe, G.; Louis, E. Herringbone Pattern and CH–π Bonding in the Crystal Architecture of Linear Polycyclic Aromatic Hydrocarbons. ChemPhysChem 2016, 17, 3548–3557. [Google Scholar] [CrossRef] [PubMed]
- Dunitz, J.D. Intermolecular atom-atom bonds in crystals? IUCrJ 2015, 2, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, C.; Espinosa, E.; Matta, C.F. On atom-atom ‘short contact’ bonding interactions in crystals. IUCrJ 2015, 2, 161–163. [Google Scholar] [CrossRef]
- Dunitz, J.D.; Gavezzotti, A. Molecular recognition in organic crystals: Directed intermolecular bonds or nonlocalized bonding? Angew. Chem. Int. Ed. Engl. 2005, 44, 1766–1787. [Google Scholar] [CrossRef] [PubMed]
- Gavezzotti, A.; Colombo, V.; Lo Presti, L. Facts and Factors in the Formation and Stability of Binary Crystals. Cryst. Growth Des. 2016, 16, 6095–6104. [Google Scholar] [CrossRef]
- Mukherjee, A. Building upon Supramolecular Synthons: Some Aspects of Crystal Engineering. Cryst. Growth Des. 2015, 15, 3076–3085. [Google Scholar] [CrossRef]
- Price, S.L. From crystal structure prediction to polymorph prediction: Interpreting the crystal energy landscape. Phys. Chem. Chem. Phys. 2008, 10, 1996–2009. [Google Scholar] [CrossRef]
- Torubaev, Y.V.; Skabitsky, I.V. Crystals at a Carrefour on the Way through the Phase Space: A Middle Path. Molecules 2021, 26, 1583. [Google Scholar] [CrossRef]
- Schur, E.; Bernstein, J.; Price, L.S.; Guo, R.; Price, S.L.; Lapidus, S.H.; Stephens, P.W. The (Current) Acridine Solid Form Landscape: Eight Polymorphs and a Hydrate. Cryst. Growth Des. 2019, 19, 4884–4893. [Google Scholar] [CrossRef]
- Singh, A.; Torubaev, Y.; Ansari, S.N.; Singh, S.K.; Mobin, S.M.; Mathur, P. The borderline: Exploring the structural landscape of triptycene in cocrystallization with ferrocene. CrystEngComm 2020, 22, 1314–1320. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.-G.; Wang, W. Unexpected Sandwiched-Layer Structure of the Cocrystal Formed by Hexamethylbenzene with 1,3-Diiodotetrafluorobenzene: A Combined Theoretical and Crystallographic Study. Crystals 2020, 10, 379. [Google Scholar] [CrossRef]
- Benito, M.; Frontera, A.; Molins, E. Cocrystallization of Antifungal Compounds Mediated by Halogen Bonding. Cryst. Growth Des. 2023, 23, 2932–2940. [Google Scholar] [CrossRef] [PubMed]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Torubaev, Y.V.; Skabitsky, I.V. The energy frameworks of aufbau synthon modules in 4-cyanopyridine co-crystals. CrystEngComm 2019, 21, 7057–7068. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed. Engl. 2007, 46, 8342–8356. [Google Scholar] [CrossRef]
- Gavezzotti, A. Pillars of crystal engineering: Crystal energies and symmetry operators. CrystEngComm 2018, 20, 2511–2518. [Google Scholar] [CrossRef]
- Ganguly, P.; Desiraju, G.R. Long-range synthon Aufbau modules (LSAM) in crystal structures: Systematic changes in C6H6−nFn(0 ≤ n ≤ 6) fluorobenzenes. CrystEngComm 2010, 12, 817–833. [Google Scholar] [CrossRef]
- Torubaev, Y.V.; Skabitsky, I.V.; Raghuvanshi, A. The structural landscape of ferrocenyl polychalcogenides. J. Organomet. Chem. 2021, 951, 122006. [Google Scholar] [CrossRef]
- Hartman, P.; Perdok, W.G. On the relations between structure and morphology of crystals. I. Acta Crystallogr. 1955, 8, 49–52. [Google Scholar] [CrossRef]
- Hartman, P.; Chan, H.K. Application of the periodic bond chain (PBC) theory and attachment energy consideration to derive the crystal morphology of hexamethylmelamine. Pharm. Res. 1993, 10, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhao, F.Q.; Xu, S.Y.; Ju, X.H.; Ye, C.C. Crystal Morphology Prediction and Anisotropic Evolution of 1,1-Diamino-2,2-dinitroethylene (FOX-7) by Temperature Tuning. Sci. Rep. 2020, 10, 2317. [Google Scholar] [CrossRef] [PubMed]
- Hartman, P.; Bennema, P. The attachment energy as a habit controlling factor. J. Cryst. Growth 1980, 49, 145–156. [Google Scholar] [CrossRef]
- Torubaev, Y.V.; Howe, D.; Leitus, G.; Rosokha, S.V. The relationship between the crystal habit and the energy framework pattern: A case study involving halogen bonding on the edge of a covalent bond. CrystEngComm 2023, 25, 3380–3390. [Google Scholar] [CrossRef]
- Shishkin, O.V.; Medvediev, V.V.; Zubatyuk, R.I. Supramolecular architecture of molecular crystals possessing shearing mechanical properties: Columns versus layers. CrystEngComm 2013, 15, 160–167. [Google Scholar] [CrossRef]
- Pinal, R. Effect of molecular symmetry on melting temperature and solubility. Org. Biomol. Chem. 2004, 2, 2692–2699. [Google Scholar] [CrossRef]
- Goldfarb, J.L.; Külaots, I. Melting points and enthalpies of fusion of anthracene and its heteroatomic counterparts. J. Therm. Anal. Calorim. 2010, 102, 1063–1070. [Google Scholar] [CrossRef]
- Dunitz, J.D.; Gavezzotti, A. Supramolecular Synthons: Validation and Ranking of Intermolecular Interaction Energies. Cryst. Growth Des. 2012, 12, 5873–5877. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Bruce, M.I.; Head, N.J.; Skelton, B.W.; Spackman, M.A.; White, A.H. Tetraiodoallene, I2C=C=CI2—The missing link between I2C=CI2 and I2C=C=C=CI2—and the oxidation product, 2,2-diiodoacrylicacid, I2C=CH(CO2H). Aust. J. Chem. 2018, 71, 70–73. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N.; Varfolomeev, M.A.; Solomonov, B.N.; Zherikova, K.V.; Melkhanova, S.V. Thermochemistry of dihalogen-substituted benzenes: Data evaluation using experimental and quantum chemical methods. J. Phys. Chem. B 2014, 118, 14479–14492. [Google Scholar] [CrossRef]
- Walsh, P.N.; Smith, N.O. Sublimation Pressure of α-p-Dichloro-β-p-Dichloro, and p-Dibromo-, and p-Bromochlorobenzene. J. Chem. Eng. Data 2002, 6, 33–35. [Google Scholar] [CrossRef]
- Stephenson, R.M.; Malanowski, S. Handbook of the Thermodynamics of Organic Compounds; Springer Science & Business Media: Berlin, Germany, 1987. [Google Scholar]
- Solomonov, B.N.; Nagrimanov, R.N.; Varfolomeev, M.A.; Buzyurov, A.V.; Mukhametzyanov, T.A. Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15 K. Thermochim. Acta 2016, 627–629, 77–82. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Balakhontsev, I.S.; Miroshnichenko, E.A.; Solomonov, B.N. Estimation of sublimation enthalpies of aromatic compounds as a function of temperature. J. Chem. Thermodyn. 2022, 174, 106861. [Google Scholar] [CrossRef]
- Chickos, J.S.; Gavezzotti, A. Sublimation Enthalpies of Organic Compounds: A Very Large Database with a Match to Crystal Structure Determinations and a Comparison with Lattice Energies. Cryst. Growth Des. 2019, 19, 6566–6576. [Google Scholar] [CrossRef]
- Chickos, J.S.; Acree, W.E. Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001. J. Phys. Chem. Ref. Data 2002, 31, 537–698. [Google Scholar] [CrossRef]
Elattice | ||
---|---|---|
kJ/mol | m.p., °C | |
1,2-DITFB | −96 | 50 |
1,3-DITFB | −85 | 25 |
1,4-DITFB (α form) | −102 | 108 |
1,4-DITFB (β form) | −90 | n/a * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torubaev, Y.V.; Skabitsky, I.V. Overlooked Solid State Structure of 1,3-I2C6F4—The Meta-Member of an Iconic Halogen Bond Donors Trio. Crystals 2023, 13, 1555. https://doi.org/10.3390/cryst13111555
Torubaev YV, Skabitsky IV. Overlooked Solid State Structure of 1,3-I2C6F4—The Meta-Member of an Iconic Halogen Bond Donors Trio. Crystals. 2023; 13(11):1555. https://doi.org/10.3390/cryst13111555
Chicago/Turabian StyleTorubaev, Yury V., and Ivan V. Skabitsky. 2023. "Overlooked Solid State Structure of 1,3-I2C6F4—The Meta-Member of an Iconic Halogen Bond Donors Trio" Crystals 13, no. 11: 1555. https://doi.org/10.3390/cryst13111555
APA StyleTorubaev, Y. V., & Skabitsky, I. V. (2023). Overlooked Solid State Structure of 1,3-I2C6F4—The Meta-Member of an Iconic Halogen Bond Donors Trio. Crystals, 13(11), 1555. https://doi.org/10.3390/cryst13111555