Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Preparation
2.2. Optical Absorption Measurements
2.3. Optical Pump–Terahertz Probe Measurements
2.4. Terahertz Photoconductivity Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gouskov, A.; Gamassel, J.; Gouskov, L. Growth and characterization of III–V layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe. Prog. Cryst. Growth Charact. Mater. 1982, 5, 323–413. [Google Scholar] [CrossRef]
- Sarkisov, S.Y.; Kosobutsky, A.V.; Shandakov, S.D. Effect of van der Waals interactions on the structural and binding properties of GaSe. J. Solid State Chem. 2015, 232, 67–72. [Google Scholar] [CrossRef]
- Arora, H.; Erbe, A. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 2021, 3, 662–693. [Google Scholar] [CrossRef]
- Redkin, R.A.; Kobtsev, D.A.; Kolesnikova, I.A.; Bereznaya, S.A.; Sarkisov, Y.S.; Voevodin, V.I.; Mihaylov, T.A.; Novikov, V.A.; Sarkisov, S.Y. The visibility and stability of GaSe nanoflakes of about 50 layers on SiO2/Si wafers. Int. J. Mod. Phys. B 2021, 35, 2150273. [Google Scholar] [CrossRef]
- Palmer, J.E.; Saitoh, T.; Yodo, T.; Tamura, M. Growth and characterization of GaAs/GaSe/Si heterostructures. Jpn. J. Appl. Phys. 1993, 32, L1126. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Bereznaya, S.A.; Beisel, N.F.; Korotchenko, Z.V.; Kruchinin, V.N.; Pokrovsky, L.D.; Saprykin, A.I.; Sarkisov, S.Y. Growth, chromium distribution and electrical properties of GaSe:Cr single crystals. Mat. Chem. Phys. 2014, 146, 12–17. [Google Scholar] [CrossRef]
- Voevodin, V.G.; Voevodina, O.V.; Bereznaya, S.A.; Korotchenko, Z.V.; Morozov, A.N.; Sarkisov, S.Y.; Fernelius, N.C.; Goldstein, J.T. Large single crystals of gallium selenide: Growing, doping by in and characterization. Opt. Mater. 2004, 26, 495–499. [Google Scholar] [CrossRef]
- Zhou, Y.; Nie, Y.; Liu, Y.; Yan, K.; Hong, J.; Jin, C.; Zhou, Y.; Yin, J.; Liu, Z.; Peng, H. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-F.; Fuh, H.-R.; Coileáin, C.Ó.; Cullen, C.P.; Stimpel-Lindner, T.; Duesberg, G.S.; Leonardo Camargo, Ó.; Zhang, D.; Cho, J.; Choi, M.; et al. Highly sensitive, selective, stable, and flexible NO2 sensor based on GaSe. Adv. Mater. Technol. 2020, 5, 1901085. [Google Scholar] [CrossRef]
- Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S.W.; et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 2014, 8, 119–123. [Google Scholar] [CrossRef]
- Huber, R.; Brodschelm, A.; Tauser, F.; Leitenstorfer, A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 2000, 76, 3191–3193. [Google Scholar] [CrossRef]
- Junginger, F.; Sell, A.; Schubert, O.; Mayer, B.; Brida, D.; Marangoni, M.; Cerullo, G.; Leitenstorfer, A.; Huber, R. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 2010, 35, 2645–2647. [Google Scholar] [CrossRef] [PubMed]
- Knorr, M.; Raab, J.; Tauer, M.; Merkl, P.; Peller, D.; Wittmann, E.; Riedle, E.; Lange, C.; Huber, R. Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate. Opt. Lett. 2017, 42, 4367–4370. [Google Scholar] [CrossRef] [PubMed]
- Sell, A.; Leitenstorfer, A.; Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 2008, 33, 2767–2769. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, J.; Zhang, X.-C. GaSe crystals for broadband terahertz wave detection. Appl. Phys. Lett. 2004, 85, 863–865. [Google Scholar] [CrossRef]
- Keilmann, F.; Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim. Terahertz Waves 2012, 33, 479–484. [Google Scholar] [CrossRef]
- Su, X.; Lyu, M.; Hoang, T.; Xu, Z.; Zheng, Y.; Strickland, D. Investigation of long wavelength mid-infrared generation in the tight focusing limit. Opt. Express 2019, 27, 24945–24952. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhu, R.; Wang, B.; Bai, Y.; Ding, T.; Sun, T.; Lü, X.; Peng, J.; Zheng, Y. Generation of 8–20 μm mid-infrared ultrashort femtosecond laser pulses via difference frequency generation. Photonics 2022, 9, 372. [Google Scholar] [CrossRef]
- Cao, Q.; Kärtner, F.X.; Chang, G. Towards high power longwave mid-IR frequency combs: Power scalability of high repetition-rate difference-frequency generation. Opt. Express 2020, 28, 1369–1384. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Wei, Z.; Kärtner, F.X.; Chang, G. High-power, high-repetition-rate tunable longwave mid-IR sources based on DFG in the OPA regime. Opt. Lett. 2023, 48, 1052–1055. [Google Scholar] [CrossRef]
- Beechem, T.E.; Kowalski, B.M.; Brumbach, M.T.; McDonald, A.E.; Spataru, C.D.; Howell, S.W.; Ohta, T.; Pask, J.A.; Kalugin, N.G. Oxidation of ultrathin GaSe. Appl. Phys. Lett. 2015, 107, 173103. [Google Scholar] [CrossRef]
- Redkin, R.A.; Kobtsev, D.A.; Bereznaya, S.A.; Korotchenko, Z.V.; Sarkisov, Y.S.; Mihaylov, T.A.; Sarkisov, S.Y. GaSe crystals with antireflection coatings for terahertz generation. Mater. Res. Express 2019, 6, 126201. [Google Scholar] [CrossRef]
- Hagner, M.; Sulzer, P.; Liehl, A.; Cimander, M.; Kempf, H.; Bitzer, A.; Herter, A.; Leitenstorfer, A. Ultrabroadband suppression of mid-infrared reflection losses of a layered semiconductor by nanopatterning with a focused ion beam. Opt. Express 2021, 29, 33632–33641. [Google Scholar] [CrossRef] [PubMed]
- Manjon, F.J.; Segura, A.; Munoz, V. Neutron irradiation defects in gallium sulfide: Optical absorption measurements. J. Appl. Phys. 1997, 81, 6651–6656. [Google Scholar] [CrossRef]
- Pareja, R.; De la Cruz, R.M.; Mari, B.; Segura, A.; Muñoz, V. Thermal recovery of the lattice damage in neutron-transmutation-doped InSe. Phys. Rev. B 1993, 47, 2870–2873. [Google Scholar] [CrossRef] [PubMed]
- Mari, B.; Segura, A.; Chevy, A. Electrical properties of neutron-transmutation-doped InSe. Appl. Surf. Sci. 1991, 50, 415–419. [Google Scholar] [CrossRef]
- Nakatani, H.; Sakai, E.; Tatsuyama, C.; Takeda, F. GaSe nuclear particle detectors. Nucl. Instrum. Methods Phys. Res. A 1989, 283, 1361–1365. [Google Scholar] [CrossRef]
- Brudnyi, V.N.; Budnitskii, D.L.; Krivov, M.A.; Masagutova, R.V.; Prochukhan, V.D.; Rud, Y.V. The electrical and optical properties of 2.0 MeV electron-irradiated ZnGeP2. Phys. Status Solidi 1978, 50, 379–384. [Google Scholar] [CrossRef]
- Voevodin, V.I.; Bereznaya, S.A.; Sarkisov, Y.S.; Yudin, N.N.; Sarkisov, S.Y. Terahertz generation by optical rectification of 780 nm laser pulses in pure and Sc-doped ZnGeP2 crystals. Photonics 2022, 9, 863. [Google Scholar] [CrossRef]
- Micocci, G.; Siciliano, P.; Tepore, A. Deep level spectroscopy in pGaSe single crystals. J. Appl. Phys. 1990, 10, 6582. [Google Scholar]
- Brudnyi, V.N.; Sarkisov, S.Y.; Kosobutsky, A.V. Electronic properties of GaSe, InSe, GaS and GaTe layered semiconductors: Charge neutrality level and interface barrier heights. Semicond. Sci. Technol. 2015, 30, 115019. [Google Scholar] [CrossRef]
- Micocci, G.; Serra, A.; Tepore, A. Impurity levels in Sn-doped GaSe semiconductor. Phys. Stat. Sol. 1997, 162, 649–659. [Google Scholar] [CrossRef]
- Minder, R.; Ottaviani, G.; Canali, C. Charge transport in layer semiconductors. J. Phys. Chem. Solids 1976, 37, 417–424. [Google Scholar] [CrossRef]
- Wahlstrand, J.K.; Heilweil, E.J. Contactless THz-based bulk semiconductor mobility measurements using two-photon excitation. Opt. Express 2018, 26, 29848–29853. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Las. Phot. Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Voevodin, V.I.; Brudnyi, V.N.; Sarkisov, Y.S.; Su, X.; Sarkisov, S.Y. Electrical relaxation and transport properties of ZnGeP2 and 4H-SiC crystals measured with terahertz spectroscopy. Photonics 2023, 10, 827. [Google Scholar] [CrossRef]
- Chen, C.-W.; Tang, T.-T.; Lin, S.-H.; Huang, J.Y.; Chang, C.-S.; Chung, P.-K.; Yen, S.-T.; Pan, C.-L. Optical properties and potential applications of ε-GaSe at terahertz frequencies. J. Opt. Soc. Am. B 2009, 26, A58–A65. [Google Scholar] [CrossRef]
- Lucovsky, G. On the photoionization of deep impurity centers in semiconductors. Solid State Commun. 1965, 3, 299–302. [Google Scholar] [CrossRef]
- Fleurov, V.N.; Kikoin, K.A. k.p perturbation theory for light absorption in semiconductors doped by 3D metals. J. Phys. C Solid State Phys. 1982, 15, 3523–3537. [Google Scholar] [CrossRef]
- Lucovsky, G. Optical absorption associated with deep impurity centers in semiconductors. Bull. Am. Phys. Soc. 1966, 11, 206. [Google Scholar]
- Zotova, I.B.; Ding, Y.J. Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals. Appl. Opt. 2001, 40, 6654–6658. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikova, I.A.; Kobtsev, D.A.; Redkin, R.A.; Voevodin, V.I.; Tyazhev, A.V.; Tolbanov, O.P.; Sarkisov, Y.S.; Sarkisov, S.Y.; Atuchin, V.V. Optical pump—THz probe study of HR GaAs:Cr and SI GaAs:EL2 structures with long charge carrier lifetimes. Photonics 2021, 8, 575. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Q.; Zhang, C.; Jin, B. Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-probe terahertz spectroscopy. Appl. Phys. Lett. 2008, 93, 121115. [Google Scholar] [CrossRef]
- Ottaviani, G.; Canali, C.; Nava, F.; Schmid, P.; Mooser, E.; Minder, R.; Zschokke, I. GaSe: A layer compound with anomalous valence band anisotropy. Solid State Commun. 1974, 14, 933–936. [Google Scholar] [CrossRef]
- Shigetomi, S.; Ikari, T. Optical and electrical characteristics of p-GaSe doped with Te. J. Appl. Phys. 2004, 95, 6480–6482. [Google Scholar] [CrossRef]
- Bonch-Bruevich, V.L.; Kalashnikov, S.G. Physics of Semiconductors; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1982. (In German) [Google Scholar]
- Mamontov, A.P.; Peshev, V.V.; Chernov, I.P. Role of charged state in build-up and annealing of deep centers in GaAs irradiated by protons. USSR Rept. Electron. Elec. Eng. JPRS UEE 1984, 17, 23. [Google Scholar]
- Rak, Z.; Mahanti, S.D.; Mandal, K.C.; Fernelius, N.C. Electronic structure of substitutional defects and vacancies in GaSe. J. Phys. Chem. Solids 2009, 70, 344–355. [Google Scholar] [CrossRef]
- Brudnyi, V.N.; Potapov, A.I. Electrical properties of the proton-irradiated semi-insulating GaAs: Cr. Semiconductors 2001, 35, 1361–1365. [Google Scholar] [CrossRef]
- Singh, A.; Pal, S.; Surdi, H.; Prabhu, S.S.; Mathimalar, S.; Nanal, V.; Pillay, R.G.; Dohler, G.H. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Opt. Express 2015, 23, 6656–6661. [Google Scholar] [CrossRef]
Sample | α (λ = 800 nm), cm−1 | L, μm | Pav, mW | d, mm | Δn, cm−3 | Δne-h_pairs, cm−3 | |
---|---|---|---|---|---|---|---|
Front Surface | Outflow Surface | ||||||
as-grown | 0.01 | 100 | 180 | 4 | 3.31 × 1016 | 3.89 × 1016 | 2.81 × 1016 |
Φ = 5 × 1016 cm−2 | 5.11 | 400 | 230 | 5 | 2.1 × 1016 | 3.52 × 1016 | 1.25 × 1016 |
Φ = 1 × 1017 cm−2 | 13.09 | 130 | 230 | 5 | 3.9 × 1016 | 5 × 1016 | 3.05 × 1016 |
Φ = 5 × 1017 cm−2 | 50.88 | 130 | 230 | 6 | 5.11 × 1016 | 7.65 × 1016 | 3.3 × 1016 |
Φ = 1 × 1018 cm−2 | 155.81 | 130 | 150 | 6 | 5.51 × 1016 | 1.33 × 1017 | 1.64 × 1016 |
Parameter | 9.5 K | 300 K |
---|---|---|
A1, cm−1eV5/2 | 930 (N = 6.4 × 1017 cm−3) | 400 (N = 3.3 × 1017 cm−3) |
EA1, eV | 1.52 | 1.35464 |
A2, cm−1eV5/2 | 180 (N = 1.1 × 1017 cm−3) | 690 (N = 4 × 1017 cm−3) |
EA2, eV | 1.69 | 1.72833 |
A3, cm−1eV−1/2 | 1947 | 1947 |
Eg, eV | 2.09 | 1.96 |
Sample | L, μm | −ΔT (t = 0)/T0 | Δn (t = 0), cm−3 | μ, cm2/V × s | a, ps−1 | b, ps−1 cm3 | c, ps−1 cm6 |
---|---|---|---|---|---|---|---|
as-grown | 100 | 0.14 | 3.31 × 1016 | 46 | 1.9 × 10−6 | 2.7 × 10−21 | 1.3 × 10−37 |
Φ = 5 × 1016 cm−2 | 400 | 0.16 | 2.1 × 1016 | 20 | 7 × 10−7 | 3.2 × 10−21 | 2.6 × 10−36 |
Φ = 1 × 1017 cm−2 | 130 | 0.08 | 3.9 × 1016 | 16 | 3.6 × 10−7 | 3.4 × 10−21 | 8 × 10−36 |
Φ = 5 × 1017 cm−2 | 130 | 0.09 | 5.11 × 1016 | 15 | 3.7 × 10−7 | 3.6 × 10−21 | 1.8 × 10−36 |
Φ = 1 × 1018 cm−2 | 130 | 0.09 | 5.51 × 1016 | 14 | 3.6 × 10−7 | 4.4 × 10−21 | 4.1 × 10−36 |
Sample | L, μm | Photoexcitation Delay | μ, cm2/V·s | ε∞ | n, cm−3 | τ, fs | cb |
---|---|---|---|---|---|---|---|
as-grown | 100 | dark | 47 | 7.44 | 8.32 × 1015 | 4.5 | −0.58 |
Δt2 | 30 | 7.44 | 1.66 × 1016 | 2.9 | −1.2 × 10−4 | ||
Δt1 | 40 | 7.44 | 3.31 × 1016 | 3.9 | 0 | ||
Φ = 5 × 1016 cm−2 | 400 | dark | 21 | 7.52 | 7 × 1015 | 2 | −0.12 |
Δt2 | 32 | 7.52 | 1.05 × 1016 | 3.1 | 0 | ||
Δt1 | 29 | 7.52 | 2.1 × 1016 | 2.8 | 0 | ||
Φ = 1 × 1017 cm−2 | 130 | dark | 17 | 7.5 | 6.2 × 1015 | 1.6 | 0 |
Δt2 | 22 | 7.5 | 1.95 × 1016 | 2.1 | 0 | ||
Δt1 | 21 | 7.5 | 3.9 × 1016 | 2 | 0 | ||
Φ = 5 × 1017 cm−2 | 130 | dark | 16 | 7.53 | 5.32 × 1015 | 1.5 | −0.07 |
Δt2 | 15 | 7.53 | 2.55 × 1016 | 1.4 | 0 | ||
Δt1 | 16 | 7.53 | 5.11 × 1016 | 1.5 | 0 | ||
Φ = 1 × 1018 cm−2 | 130 | dark | 15 | 7.44 | 4.32 × 1015 | 1.4 | 0 |
Δt2 | 18 | 7.44 | 2.76 × 1016 | 1.7 | 0 | ||
Δt1 | 15 | 7.44 | 5.51 × 1016 | 1.4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bereznaya, S.A.; Redkin, R.A.; Brudnyi, V.N.; Sarkisov, Y.S.; Su, X.; Sarkisov, S.Y. Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals. Crystals 2023, 13, 1562. https://doi.org/10.3390/cryst13111562
Bereznaya SA, Redkin RA, Brudnyi VN, Sarkisov YS, Su X, Sarkisov SY. Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals. Crystals. 2023; 13(11):1562. https://doi.org/10.3390/cryst13111562
Chicago/Turabian StyleBereznaya, Svetlana A., Ruslan A. Redkin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su, and Sergey Yu. Sarkisov. 2023. "Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals" Crystals 13, no. 11: 1562. https://doi.org/10.3390/cryst13111562
APA StyleBereznaya, S. A., Redkin, R. A., Brudnyi, V. N., Sarkisov, Y. S., Su, X., & Sarkisov, S. Y. (2023). Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals. Crystals, 13(11), 1562. https://doi.org/10.3390/cryst13111562