Nitride Wide-Bandgap Semiconductors for UV Nonlinear Optics
Abstract
:1. Introduction
2. Methods
3. Results
3.1. GaN and AlN with Tetrahedral [GaN4] or [AlN4] Motif
3.2. KCN and AsC3N3 with Chained [CN] Motif
3.3. CNI and NaCNO with Chained [CNI] or [CNO] Motif
3.4. α-Si3N4 and Si2N2O with Tetrahedral [SiN4] or [SiN3O] Motif
3.5. Li2PNO2 and PNF2 with Poly-Chained [PN2O2] or [PN2F2] Motif
4. Discussion
5. Evaluation and Outlook
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hao, Y.; Zhang, J.F.; Zhang, J.C. Nitride wide bandgap semiconductor material and electronic devices. MRS Bull. 2018, 43, 69. [Google Scholar]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Lo Nigro, R.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187–188, 66–77. [Google Scholar] [CrossRef]
- Liu, X.; Bruch, A.W.; Gong, Z.; Lu, J.; Surya, J.B.; Zhang, L.; Wang, J.; Yan, J.; Tang, H.X. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 2018, 5, 1279–1282. [Google Scholar] [CrossRef]
- Coulon, P.M.; Kusch, G.; Martin, R.W.; Shields, P.A. Deep UV emission from highly ordered AIGaN/AIN core-shell nanorods. ACS Appl. Mater. Interfaces 2018, 10, 33441–33449. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kagdada, H.L.; Jha, P.K.; Spiewak, P.; Kurzydlowski, K.J. Thermal transport properties of boron nitride based materials: A review. Renew. Sustain. Energy Rev. 2020, 120, 109622. [Google Scholar] [CrossRef]
- Shen, D.; Shao, Y.; Zhu, Y. Bandgap trimming and optical properties of Si3N4: Al microbelt phosphors for warm white light-emitting diodes. Crystengcomm 2019, 21, 6566–6573. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, K.W.; Hu, L.F.; Al-Ghamdi, A.A.; Fang, X.S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502. [Google Scholar] [CrossRef]
- Jones-Bey, H. Deep-UV applications await improved nonlinear optics. Laser Focus World 1998, 34, 127–134. [Google Scholar]
- Togashi, T.; Nabekawa, N.; Sekikawa, T.; Watanabe, S. Generation of milliwatt narrow-bandwidth vacuum ultraviolet radiation by an all-solid-state tunable high-average-power laser system. Opt. Lett. 2001, 26, 831–833. [Google Scholar] [CrossRef]
- Chen, C.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Aka, G.; Yoshimura, M.; et al. Nonlinear Optical Borate Crystals, Principles and Applications; Wiley-VCH Press: Weinheim, Germany, 2012. [Google Scholar]
- Savage, N. Ultraviolet lasers. Nat. Photonics 2007, 1, 83–85. [Google Scholar] [CrossRef]
- Wang, X.Z.; Yuan, H.Y.; Wang, M.S.; Huang, W.C. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser. Opt. Commun. 2016, 376, 67–71. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.R.; Wang, X.Y.; Wang, G.L.; Zhu, Y.; Chen, C.T. High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices. Opt. Commun. 2012, 285, 4519–4522. [Google Scholar] [CrossRef]
- Eismann, U.; Scholz, M.; Paasch-Colberg, T.; Stuhler, J. Short, shorter, shortest: Diode lasers in the deep ultraviolet. Laser Focus World 2016, 52, 39–44. [Google Scholar]
- Maker, P.D.; Savage, C.M.; Terhune, R.W.; Nisenoff, M. Effects of dispersion and focusing on production of optical harmonics. Phys. Rev. Lett. 1962, 8, 21–22. [Google Scholar] [CrossRef]
- Giordmaine, J.A. Mixing of light beams in crystals. Phys. Rev. Lett. 1962, 8, 19–20. [Google Scholar] [CrossRef]
- Eckardt, R.C.; Masuda, H.; Fan, Y.X.; Byer, R.L. Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MGO-LiNbO3, and KTP measured by phase-matched 2nd-harmonic generation. IEEE J. Quantum Electron. 1990, 26, 922–933. [Google Scholar] [CrossRef]
- Chen, C.T.; Wu, Y.C.; Jiang, A.D.; Wu, B.C.; You, G.M.; Li, R.K.; Lin, S.J. New nonlinear-optical crystal-LIB3O5. J. Opt. Soc. Am. B 1989, 6, 616–621. [Google Scholar] [CrossRef]
- Chen, C.T.; Wu, B.C.; Jiang, A.D.; You, G.M. A new-type ultraviolet SHG crystal-beta-BaB2O4. Sci. Sin. Ser. B-Chem. Biol. Agric. Med. Earth Sci. 1985, 28, 235–243. [Google Scholar]
- Chen, C.T.; Wang, G.L.; Wang, X.Y.; Xu, Z.Y. Deep-UV nonlinear optical crystal KBe2BO3F2—Discovery, growth, optical properties and applications. Appl. Phys. B 2009, 97, 9–25. [Google Scholar] [CrossRef]
- Tran, T.T.; Young, J.S.; Rondinelli, J.M.; Halasyamani, P.S. Mixed-metal carbonate fluorides as deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2017, 139, 1285–1295. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, J.; Sha, H.; Wang, Z.; He, C.; Su, R.; Yang, X.; Long, X. Nonlinear optical inorganic sulfates: The improvement of the phase matching ability driven by the structural modulation. Coord. Chem. Rev. 2023, 494, 215345–215354. [Google Scholar] [CrossRef]
- Liu, X.M.; Gong, P.F.; Yang, Y.; Song, G.M.; Lin, Z.S. Nitrate nonlinear optical crystals: A survey on structure-performance relationships. Coord. Chem. Rev. 2019, 400, 213045–213058. [Google Scholar] [CrossRef]
- Kang, L.; Liang, F.; Lin, Z.; Liu, F.; Huang, B. Cyano-based materials with giant optical anisotropy and second harmonic-generation effect. Inorg. Chem. 2018, 57, 15001–15008. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhang, X.; Liang, F.; Lin, Z.; Huang, B. Poly(difluorophosphazene) as the first deep-ultraviolet nonlinear optical polymer: A first-principles prediction. Angew. Chem. Int. Ed. 2019, 58, 10250–10254. [Google Scholar] [CrossRef]
- Kang, L.; He, G.; Zhang, X.; Li, J.; Lin, Z.; Huang, B. Alloy engineering of a polar (Si,Ge)2N2O system for controllable second harmonic performance. Inorg. Chem. 2021, 60, 7381–7388. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lin, C.S.; Chen, J.D.; Luo, M.; Xu, F.; Yang, S.D.; Shi, S.S.; Li, B.X.; Ye, N. Halonitrides Zn2NX (X=Cl,Br): Novel mid-infrared nonlinear optical materials. Chem. Mater. 2021, 33, 1462–1470. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Kang, L.; Lin, Z.S. Nonlinear optical ASnX (A = Na, H.; X = N, P) nanosheets with divalent tin lone electron pair effect by first-principles design. Nanoscale 2020, 12, 14895–14902. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Lin, Z.S. Second harmonic generation of MoSi2N4-type layers. Phys. Rev. B 2021, 103, 195404. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.; Tian, H.; Wang, C.; Ye, N.; Luo, M. Nitrides: A promising class of nonlinear optical material candidates. Mater. Chem. Front. 2023; advance article. [Google Scholar] [CrossRef]
- Jiang, X.; Kang, L.; Wang, J.F.; Huang, B. Giant bulk electrophotovoltaic effect in heteronodal-line systems. Phys. Rev. Lett. 2023, 130, 256902. [Google Scholar] [CrossRef]
- Huang, J.; Shu, S.; Cai, G.-M. Screening nitrides with high Debye temperatures as nonlinear optical materials. J. Phys. Chem. C 2022, 126, 7047–7053. [Google Scholar] [CrossRef]
- Huang, J.; Xie, C.; Wei, L.; Bian, Q.; Yang, Z.; Pan, S. Predicting Diamond-like nitrides as infrared nonlinear optical materials with high thermal conductivity. Chem. Mater. 2022, 34, 10059–10067. [Google Scholar] [CrossRef]
- Chu, D.; Huang, Y.; Xie, C.; Tikhonov, E.; Kruglov, I.; Li, G.; Pan, S.; Yang, Z. Unbiased screening of novel infrared nonlinear optical materials with high thermal conductivity: Long-neglected nitrides and popular chalcogenides. Angew. Chem. Int. Ed. 2023, 62, e202300581. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Liang, F.; Jiang, X.; Lin, Z.; Chen, C. First-principles design and simulations promote the development of nonlinear optical crystals. Acc. Chem. Res. 2019, 53, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lin, Z.; Wang, Z. The development of new borate-based UV nonlinear optical crystals. Appl. Phys. B Lasers Opt. 2005, 80, 1–25. [Google Scholar] [CrossRef]
- Liu, X.; Kang, L.; Lin, Z. Regulating guanidinium-based hybrid materials for ultraviolet nonlinear optical applications by hybrid strength and hybrid pattern. Inorg. Chem. 2021, 60, 3834–3842. [Google Scholar] [CrossRef] [PubMed]
- Kakanakova-Georgieva, A.; Ivanov, I.G.; Suwannaharn, N.; Hsu, C.-W.; Cora, I.; Pécz, B.; Giannazzo, F.; Sangiovanni, D.G.; Gueorguiev, G.K. MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngComm 2021, 23, 385–390. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Nilsson, D.; Stattin, M.; Forsberg, U.; Haglund, Å.; Larsson, A.; Janzén, E. Mg-doped Al0.85Ga0.15N layers grown by hot-wall MOCVD with low resistivity at room temperature. Phys. Status Solidi RRL 2010, 4, 311–313. [Google Scholar] [CrossRef]
- Kang, L.; Lin, Z. Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery. Light-Sci. Appl. 2022, 11, 201. [Google Scholar] [CrossRef]
- Hao, X.; Luo, M.; Lin, C.S.; Peng, G.; Xu, F.; Ye, N. M(NH2SO3)2 (M=Sr, Ba): Two deep-ultraviolet transparent sulfamates exhibiting strong second harmonic generation responses and moderate birefringence. Angew. Chem. Int. Ed. 2021, 60, 7621–7625. [Google Scholar] [CrossRef]
- Cruickshank, D.W.J. Refinements of structures containing bonds between Si, P, S or Cl and O or N.I. NaPO3NH3. Acta Crystallogr. 1964, 17, 671–672. [Google Scholar] [CrossRef]
- Alves Machado Filho, M.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2023, 3, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Talley, K.R.; Perkins, C.L.; Diercks, D.R.; Brennecka, G.L.; Zakutayev, A. Synthesis of LaWN3 nitride perovskite with polar symmetry. Science 2021, 374, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.J.; Chen, P.; Paillard, C.; Arras, R.; Fang, Y.-W.; Li, X.; Gosteau, J.; Yang, Y.; Bellaiche, L. Large spin splittings due to the orbital degree of freedom and spin textures in a ferroelectric nitride perovskite. Phys. Rev. B 2020, 102, 041203. [Google Scholar] [CrossRef]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Jena, D.; Page, R.; Casamento, J.; Dang, P.; Singhal, J.; Zhang, Z.; Wright, J.; Khalsa, G.; Cho, Y.; Xing, H.G. The new nitrides: Layered, ferroelectric, magnetic, metallic and superconducting nitrides to boost the GaN photonics and electronics eco-system. Jpn. J. Appl. Phys. 2019, 58, SC0801. [Google Scholar] [CrossRef]
- Sun, W.; Bartel, C.J.; Arca, E.; Bauers, S.R.; Matthews, B.; Orvañanos, B.; Chen, B.R.; Toney, M.F.; Schelhas, L.T.; Tumas, W.; et al. A map of the inorganic ternary metal nitrides. Nat. Mater. 2019, 18, 732–739. [Google Scholar] [CrossRef]
Symmetry | Motifs | Eg (eV) | dij (pm/V) | |Δn|@ 1064 nm | λUV (nm) | λPM (nm) | Refs. | |
---|---|---|---|---|---|---|---|---|
CO(NH2)2 | P-421m | Cal. | 6.35 | d36 = 1.70 | 0.111 | 195 | 245 | [37] |
Exp. | 6.18 | d36 = 1.30 | 0.102 | 201 | --- | [24] | ||
GaN | P63mc | [GaN4] | 3.50 | d31 = 2.42; d33 = −3.64 | 0.017 | 354 | --- | [30] |
AlN | P63mc | [AlN4] | 6.20 | d31 = 0.23; d33 = 0.86 | 0.023 | 200 | --- | [30] |
α-KCN | Cm | [CN] | 7.11 | d15 = 0.76 | 0.117 | 175 | 198 | [24] |
β-KCN | Cc | [CN] | 7.60 | d11 = 0.59 | 0.121 | 164 | 180 | [24] |
AsC3N3 | C2 | [CN] + [AsC3] | 5.96 | d22 = 0.71 | 0.123 | 208 | 235 | [24] |
CNI | R3m | [CNI] | 5.34 | d33 = 16.95 | 0.737 | 233 | 233 | [24] |
NaCNO | R3m | [CNO] | 5.20 | d33 = 0.66 | 0.374 | 239 | 239 | [24] |
α-Si3N4 | P31c | [SiN4] | 4.60 | d15 = 0.50; d24 = 0.50 | 0.016 | 270 | --- | [26] |
Si2N2O | CmC21 | [SiN3O] | 5.00 | d24 = 1.00; d33 = −0.86 | 0.080 | 249 | 285 | [26] |
Li2PNO2 | CmC21 | [PN2O2] | 6.98 | d32 = 0.79; d33 = −0.95 | 0.067 | 178 | 264 | [25] |
PNF2 | CmC21 | [PN2F2] | 8.80 | d32 = 0.44; d33 = −0.86 | 0.164 | 142 | 142 | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Kang, L. Nitride Wide-Bandgap Semiconductors for UV Nonlinear Optics. Crystals 2023, 13, 1536. https://doi.org/10.3390/cryst13111536
Li S, Kang L. Nitride Wide-Bandgap Semiconductors for UV Nonlinear Optics. Crystals. 2023; 13(11):1536. https://doi.org/10.3390/cryst13111536
Chicago/Turabian StyleLi, Shihang, and Lei Kang. 2023. "Nitride Wide-Bandgap Semiconductors for UV Nonlinear Optics" Crystals 13, no. 11: 1536. https://doi.org/10.3390/cryst13111536
APA StyleLi, S., & Kang, L. (2023). Nitride Wide-Bandgap Semiconductors for UV Nonlinear Optics. Crystals, 13(11), 1536. https://doi.org/10.3390/cryst13111536