Unraveling the Effect of Compositional Ratios on the Kesterite Thin-Film Solar Cells Using Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of CZTSSe TFSCs and Construction of Database
2.2. Characterizations
2.3. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Xu, X.; Wu, H.; Wang, J.; Lou, L.; Yin, K.; Gong, Y.; Shi, J.; Luo, Y.; Li, D.; et al. Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency. Nat. Energy 2023, 8, 526–535. [Google Scholar] [CrossRef]
- Li, Y.; Wei, H.; Cui, C.; Wang, X.; Shao, Z.; Pang, S.; Cui, G. CZTSSe Solar Cells: Insights into Interface Engineering. J. Mater. Chem. A Mater. 2023, 11, 4836–4849. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Ma, F.; Sun, H.; Cong, J.; Privat, K.; Webster, R.F.; Cheong, S.; Yao, Y.; Chin, R.L.; et al. Unveiling Microscopic Carrier Loss Mechanisms in 12% Efficient Cu2ZnSnSe4 Solar Cells. Nat. Energy 2022, 7, 754–764. [Google Scholar] [CrossRef]
- Park, H.K.; Cho, Y.; Kim, J.; Kim, S.; Kim, S.; Kim, J.; Yang, K.J.; Kim, D.H.; Kang, J.K.; Jo, W. Flexible Kesterite Thin-Film Solar Cells under Stress. npj Flex. Electron. 2022, 6, 91. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory-Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 17 October 2023).
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Goubard, F.; Boerasu, I.; Stefan Vasile, B. Current Status of the Open-Circuit Voltage of Kesterite CZTS Absorber Layers for Photovoltaic Applications—Part I, a Review. Materials 2022, 15, 8427. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Zhu, Q.; Zhou, Y.; Qiu, R.; Niu, C.; Yan, W.; Huang, W.; Xin, H. Identifying the Origin of the Voc Deficit of Kesterite Solar Cells from the Two Grain Growth Mechanisms Induced by Sn2+ and Sn4+ Precursors in DMSO Solution. Energy Environ. Sci. 2021, 14, 2369–2380. [Google Scholar] [CrossRef]
- Azzouzi, M.; Cabas-Vidani, A.; Haass, S.G.; Röhr, J.A.; Romanyuk, Y.E.; Tiwari, A.N.; Nelson, J. Analysis of the Voltage Losses in CZTSSe Solar Cells of Varying Sn Content. J. Phys. Chem. Lett. 2019, 10, 2829–2835. [Google Scholar] [CrossRef]
- Wei, H.; Li, Y.; Cui, C.; Wang, X.; Shao, Z.; Pang, S.; Cui, G. Defect Suppression for High-Efficiency Kesterite CZTSSe Solar Cells: Advances and Prospects. Chem. Eng. J. 2023, 462, 142121. [Google Scholar] [CrossRef]
- Liu, F.; Wu, S.; Zhang, Y.; Hao, X.; Ding, L. Advances in Kesterite Cu2ZnSn(S, Se)4 Solar Cells. Sci. Bull. 2020, 65, 698–701. [Google Scholar] [CrossRef]
- Guo, J.; Ao, J.; Zhang, Y. A Critical Review on Rational Composition Engineering in Kesterite Photovoltaic Devices: Self-Regulation and Mutual Synergy. J. Mater. Chem. A 2023, 11, 16494–16518. [Google Scholar] [CrossRef]
- Kumar, M.; Dubey, A.; Adhikari, N.; Venkatesan, S.; Qiao, Q. Strategic Review of Secondary Phases, Defects and Defect-Complexes in Kesterite CZTS–Se Solar Cells. Energy Env. Sci. 2015, 8, 3134–3159. [Google Scholar] [CrossRef]
- Schorr, S.; Gurieva, G.; Guc, M.; Dimitrievska, M.; Pérez-Rodríguez, A.; Izquierdo-Roca, V.; Schnohr, C.S.; Kim, J.; Jo, W.; Merino, J.M. Point Defects, Compositional Fluctuations, and Secondary Phases in Non-Stoichiometric Kesterites. J. Phys. Energy 2020, 2, 012002. [Google Scholar] [CrossRef]
- Maeda, T.; Nakamura, S.; Wada, T. First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 4. Jpn. J. Appl. Phys. 2011, 50, 04DP07. [Google Scholar] [CrossRef]
- Xu, P.; Chen, S.; Huang, B.; Xiang, H.J.; Gong, X.G.; Wei, S.H. Stability and Electronic Structure of Cu2ZnSnS4 Surfaces: First-Principles Study. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 045427. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.; Liang, J.; Han, H.; Xiang, P.; Yan, W. Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects. Adv. Funct. Mater. 2023, 33, 2214271. [Google Scholar] [CrossRef]
- Yılmaz, B.; Yıldırım, R. Critical Review of Machine Learning Applications in Perovskite Solar Research. Nano Energy 2021, 80, 105546. [Google Scholar] [CrossRef]
- Karade, V.C.; Sutar, S.S.; Shin, S.W.; Suryawanshi, M.P.; Jang, J.S.; Gour, K.S.; Kamat, R.K.; Yun, J.H.; Dongale, T.D.; Kim, J.H. Machine Learning Assisted Analysis, Prediction, and Fabrication of High-Efficiency CZTSSe Thin Film Solar Cells. Adv. Funct. Mater. 2023, 33, 202303459. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Sun, R.; Min, J. Machine Learning for Accelerating the Discovery of High-Performance Donor/Acceptor Pairs in Non-Fullerene Organic Solar Cells. npj Comput. Mater. 2020, 6, 120. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, J.-L. Machine Learning for High Performance Organic Solar Cells: Current Scenario and Future Prospects. Energy Env. Sci. 2021, 14, 90–105. [Google Scholar] [CrossRef]
- Li, F.; Peng, X.; Wang, Z.; Zhou, Y.; Wu, Y.; Jiang, M.; Xu, M. Machine Learning (ML)-Assisted Design and Fabrication for Solar Cells. Energy Environ. Mater. 2019, 2, 280–291. [Google Scholar] [CrossRef]
- Malhotra, P.; Khandelwal, K.; Biswas, S.; Chen, F.-C.; Sharma, G.D. Opportunities and Challenges for Machine Learning to Select Combination of Donor and Acceptor Materials for Efficient Organic Solar Cells. J. Mater. Chem. C Mater. 2022, 10, 17781–17811. [Google Scholar] [CrossRef]
- Kumar, C.; Patra, S.N. Prediction of Bandgap of Undoped TiO2 for Dye-Sensitized Solar Cell Photoanode. Appl. Sol. Energy 2022, 58, 482–489. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, W.; Li, Y.; Huo, X.; Li, H.; Guo, K.; Qiao, B.; Zhao, S.; Xu, Z.; Zhao, H.; et al. Key Factors Governing the Device Performance of CIGS Solar Cells: Insights from Machine Learning. Sol. Energy 2021, 228, 45–52. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Y.; Wei, D.; Huo, X.; Huang, X.; Li, Y.; Meng, J.; Zhao, S.; Qiao, B.; Liang, Z.; et al. Screening Interface Passivation Materials Intelligently through Machine Learning for Highly Efficient Perovskite Solar Cells. J. Mater. Chem. A 2022, 10, 17782–17789. [Google Scholar] [CrossRef]
- Priya, P.; Aluru, N.R. Accelerated Design and Discovery of Perovskites with High Conductivity for Energy Applications through Machine Learning. npj Comput. Mater. 2021, 7, 90. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Huo, X.; Wei, D.; Meng, J.; Dong, J.; Qiao, B.; Zhao, S.; Xu, Z.; Song, D. Bandgap Tuning Strategy by Cations and Halide Ions of Lead Halide Perovskites Learned from Machine Learning. RSC Adv. 2021, 11, 15688–15694. [Google Scholar] [CrossRef]
- Omer, Z.M.; Shareef, H. Comparison of Decision Tree Based Ensemble Methods for Prediction of Photovoltaic Maximum Current. Energy Convers. Manag. X 2022, 16, 100333. [Google Scholar] [CrossRef]
- Lou, L.; Wang, J.; Yin, K.; Meng, F.; Xu, X.; Zhou, J.; Wu, H.; Shi, J.; Luo, Y.; Li, D.; et al. Crown Ether-Assisted Colloidal ZnO Window Layer Engineering for Efficient Kesterite (Ag,Cu) 2 ZnSn(S,Se) 4 Solar Cells. ACS Energy Lett. 2023, 8, 3775–3783. [Google Scholar] [CrossRef]
- Demidova, L.A. Two-Stage Hybrid Data Classifiers Based on SVM and KNN Algorithms. Symmetry 2021, 13, 615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karade, V.C.; Sutar, S.S.; Jang, J.S.; Gour, K.S.; Shin, S.W.; Suryawanshi, M.P.; Kamat, R.K.; Dongale, T.D.; Kim, J.H.; Yun, J.H. Unraveling the Effect of Compositional Ratios on the Kesterite Thin-Film Solar Cells Using Machine Learning Techniques. Crystals 2023, 13, 1581. https://doi.org/10.3390/cryst13111581
Karade VC, Sutar SS, Jang JS, Gour KS, Shin SW, Suryawanshi MP, Kamat RK, Dongale TD, Kim JH, Yun JH. Unraveling the Effect of Compositional Ratios on the Kesterite Thin-Film Solar Cells Using Machine Learning Techniques. Crystals. 2023; 13(11):1581. https://doi.org/10.3390/cryst13111581
Chicago/Turabian StyleKarade, Vijay C., Santosh S. Sutar, Jun Sung Jang, Kuldeep Singh Gour, Seung Wook Shin, Mahesh P. Suryawanshi, Rajanish K. Kamat, Tukaram D. Dongale, Jin Hyeok Kim, and Jae Ho Yun. 2023. "Unraveling the Effect of Compositional Ratios on the Kesterite Thin-Film Solar Cells Using Machine Learning Techniques" Crystals 13, no. 11: 1581. https://doi.org/10.3390/cryst13111581
APA StyleKarade, V. C., Sutar, S. S., Jang, J. S., Gour, K. S., Shin, S. W., Suryawanshi, M. P., Kamat, R. K., Dongale, T. D., Kim, J. H., & Yun, J. H. (2023). Unraveling the Effect of Compositional Ratios on the Kesterite Thin-Film Solar Cells Using Machine Learning Techniques. Crystals, 13(11), 1581. https://doi.org/10.3390/cryst13111581