Adsorption of Orange G Dye on Hydrophobic Activated Bentonite from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Activated Bentonite as Precursor
2.3. Preparation of CTAB-Modified Activated Bentonite
2.4. Characterization of Adsorbents
2.5. Adsorption Experiments
3. Results and Discussion
3.1. Characterization of Modified Bentonite
3.1.1. Chemical Analysis
Content of Oxides (Weight (w)%) | Bentonite | B-Act | B-CTAB | B-Act- CTAB 100 | B-Act- CTAB 300 |
---|---|---|---|---|---|
SiO2 | 57.67 | 79.43 | 65.77 | 81.96 | 77.31 |
Al2O3 | 18.72 | 12.04 | 15.45 | 11.43 | 11.55 |
MgO | 9.60 | 4.60 | 6.60 | 4.10 | 4.00 |
Fe2O3 | 3.62 | 1.71 | 7.15 | 1.52 | 1.59 |
CaO | 0.39 | 0.17 | |||
K2O | 0.88 | 0.78 | 1.41 | 0.69 | 0.77 |
Na2O | 7.40 | ||||
SO3 | 0.18 | 0.84 | 0.64 | ||
Br | 2.90 | 3.66 | |||
TiO2 | 0.09 | 0.13 | 0.15 | 0.13 | 0.15 |
SiO2/Al2O3 | 3.08 | 6.59 | 4.25 | 7.16 | 6.69 |
SiO2/(Al2O3 + MgO + Fe2O3) | 1.80 | 4.32 | 2.25 | 4.80 | 4.51 |
3.1.2. Cation Exchange Capacity (CEC)
3.1.3. XRD Analysis
3.1.4. Analysis by Scanning Electron Microscopy
3.1.5. N2 Adsorption/Desorption
3.1.6. Infrared Spectroscopy Analysis
3.1.7. Zeta Potential
3.2. Adsorption of Orange G Dye
3.2.1. Effect of Contact Time
3.2.2. Effect of Initial Dye Concentration
3.2.3. Effect of Initial pH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padilla-Ortega, E.; Medellin-Castillo, N.; Robledo-Cabrera, A. Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II). J. Environ. Chem. Eng. 2020, 8, 103850. [Google Scholar] [CrossRef]
- Arias Espana, V.A.; Sarkar, B.; Biswas, B.; Rusmin, R.; Naidu, R. Environmental applications of thermally modified and acid activated clay minerals: Current status of the art. Environ. Technol. Innov. 2019, 13, 383–397. [Google Scholar] [CrossRef]
- Komadel, P. Chemically modified smectites. Clay Miner. 2003, 38, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Falaras, P.; Kovanis, I.; Lezou, F.; Seiragakis, G. Cottonseed oil bleaching by acid activated montmorillomite. Clay Miner. 1999, 34, 221–232. [Google Scholar] [CrossRef]
- Tsakiri, D.; Douni, I.; Taxiarchou, M. Structural and surface modification of oxalic-acid-activated bentonites in various acid concentrations for bleaching earth synthesis—A comparative study. Minerals 2022, 12, 764. [Google Scholar] [CrossRef]
- Ajemba, R.O. Modification of Ntezi bentonite structure by hydrochloric acid: Process kinetics and structural properties of the modified samples. Pak. J. Sci. Ind. Res. A Phys. Sci. 2014, 57, 1–9. [Google Scholar] [CrossRef]
- Ajemba, R.O. Structural alteration of bentonite from nkaliki by acid treatment: Studies of the kinetics and properties of the modified samples. Int. J. Adv. Eng. Technol. 2014, 7, 379–392. [Google Scholar] [CrossRef]
- Aliu, M.; Pula-Beqiri, L.; Kadriu, S.; Sadiku, M.; Lajçi, N.; Kelmendi, M. Research of the chemical composition and ion exchange properties of Karaçeva bentonite. J. Int. Environ. Appl. Sci. 2016, 11, 409–413. [Google Scholar]
- Chmielarz, L.; Wojciechowska, M.; Rutkowska, M.; Adamski, A.; Węgrzyn, A.; Kowalczyk, A.; Dudek, B.; Boroń, P.; Michalik, M.; Matusiewicz, A. Acid-activated vermiculites as catalysts of the DeNOx process. Catal. Today 2012, 191, 25–31. [Google Scholar] [CrossRef]
- Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K. Alteration of non-swelling clay minerals and magadiite by acid activation. Appl. Clay Sci. 2009, 44, 95–104. [Google Scholar] [CrossRef]
- Hussin, F.; Aroua, M.K.; Daud, W.M.A.W. Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chem. Eng. J. 2011, 170, 90–106. [Google Scholar] [CrossRef]
- Santos, S.S.G.; Silva, H.R.M.; de Souza, A.G.; Alves, A.P.M.; da Silva Filho, E.C.; Fonseca, M.G. Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl. Clay Sci. 2015, 104, 286–294. [Google Scholar] [CrossRef]
- Christidis, G.E.; Scott, P.W.; Dunham, A.C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl. Clay Sci. 1997, 12, 329–347. [Google Scholar] [CrossRef]
- Jozefaciuk, G. Effect of acid and alkali treatments on surface-charge properties of selected minerals. Clays Clay Miner. 2002, 50, 647–656. [Google Scholar] [CrossRef]
- Boroomand, N.; Shokria, Z. Adsorption of Cadmium (II) and Copper (II) onto magnetic organo-Bentonite modified by 2-(3,4-Dihydroxyphenyl)-1, 3-Dithiolane from aqueous solutions. Int. J. Environ. Sci. Dev. 2017, 8, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Tha-in, S.; Dau, H.A.; Dumri, K. The enhanced carbamate adsorption of modified bentonite with Coscinium Fenestratum. Int. J. Environ. Sci. Dev. 2013, 4, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Te, B.; Wichitsathian, B.; Yossapol, C. Modification of natural common clays as low cost adsorbents for Arsenate adsorption. Int. J. Environ. Sci. Dev. 2015, 6, 799–804. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Fe, J.; Sapitan, F.; Ballesteros, F.C.; Lu, M.-C. Using activated clay for adsorption of sulfone compounds in diesel. J. Clean. Prod. 2016, 124, 378–382. [Google Scholar] [CrossRef]
- Bendaho, D.; Driss, T.A.; Bassou, D. Adsorption of acid dye onto activated Algerian clay. Bull. Chem. Soc. Ethiop. 2017, 31, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Ullah, Z.; Hussain, S.; Gul, S.; Khan, S.; Bangash, F.K. Use of HCl-modified bentonite clay for the adsorption of Acid Blue 129 from aqueous solutions. Desalin. Water Treat. 2015, 57, 8894–8903. [Google Scholar] [CrossRef]
- Syed, H.J.; Zahir, A.; Khan, A.; Afzal, S.; Mansha, M. Adsorption of Mordant Red 73 dye on acid activated bentonite: Kinetics and thermodynamic study. J. Mol. Liq. 2018, 254, 398–405. [Google Scholar] [CrossRef]
- El Mouzdahir, Y.; Elmchaouri, A.; Mahboub, R.; Gil, A.; Korili, S.A. Equilibrium modeling for the adsorption of Methylene Blue from aqueous solutions on activated clay minerals. Desalination 2010, 250, 335–338. [Google Scholar] [CrossRef]
- Khenifi, A.; Bouberka, Z.; Sekrane, F.; Kameche, M.; Derriche, Z. Adsorption study of an industrial dye by an organic clay. Adsorption 2007, 13, 149–158. [Google Scholar] [CrossRef]
- Manzotti de Souza, F.; Machi Lazarin, A.; Gurgel, M.; Vieira, A.; dos Santos, O.A.A. Kinetic, equilibrium, and thermodynamic study on Atrazine adsorption in organophilic clay. Desalin. Water Treat. 2018, 123, 240–252. [Google Scholar] [CrossRef]
- Chu, Y.; Khan, M.A.; Zhu, S.; Xia, M.; Lei, W.; Wang, F.; Xu, Y. Microstructural modification of organo-montmorillonite with Gemini surfactant containing four ammonium cations: Molecular dynamics (MD) simulations and adsorption capacity for copper ions. J. Chem. Technol. Biotechnol. 2019, 94, 3585–3594. [Google Scholar] [CrossRef]
- Zhao, Q.; Burns, S.E. Modeling sorption and diffusion of organic sorbate in hexadecyltrimethylammonium-modified clay nanopores—A molecular dynamics simulation study. Environ. Sci. Technol. 2013, 47, 2769–2776. [Google Scholar] [CrossRef]
- Ashna, P.; Heydari, R. Removal of Reactive Red 198 from aqueous solutions using modified clay: Optimization, kinetic and isotherm. J. Chil. Chem. Soc. 2020, 65, 4958–4961. [Google Scholar] [CrossRef]
- Ouachtak, H.; El Guerdaoui, A.; Haounati, R.; Akhouairi, S.; El Haouti, R.; Hafid, N.; Ait Addi, A.; Šljukić, B.; Santos, D.M.F.; Labd Taha, M. Highly efficient and fast batch adsorption of orange G dye from polluted water using superb organo-montmorillonite: Experimental study and molecular dynamics investigation. J. Mol. Liq. 2021, 335, 116560. [Google Scholar] [CrossRef]
- Bouberka, Z.; Khenifi, A.; Ait Mahamed, H.; Haddou, B.; Belkaid, N.; Bettahar, N.; Derriche, Z. Adsorption of Supranol Yellow 4 GL from aqueous solution by surfactant-treated aluminum/chromium-intercalated bentonite. J. Hazard. Mater. 2009, 162, 378–385. [Google Scholar] [CrossRef]
- Bergaya, F.; Vayer, M. CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Appl. Clay Sci. 1997, 12, 275–280. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten Adsorption geloster Stoffe. Kungliga svenska vetenskapsakademiens Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.-S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part, I. solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Jeppu, G.P.; Clement, T.P. A modified Langmuir–Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 129–130, 46–53. [Google Scholar] [CrossRef]
- Mele, A.; Taraj, K.; Korpa, A. Acid activation of Prrenjas clay mineral. J. Eng. Process. Manag. 2015, 7, 37–44. [Google Scholar] [CrossRef]
- Gates, W.P.; Anderson, J.S.; Raven, M.D.; Churchman, G.J. Mineralogy of a bentonite from Miles, Queensland, Australia and characterisation of its acid activation products. Appl. Clay Sci. 2002, 20, 189–197. [Google Scholar] [CrossRef]
- Hattab, A.; Bagane, M.; Chlendi, M. Characterization of Tataouine’s raw and activated clay. J. Chem. Eng. Process. Technol. 2013, 4, 155. [Google Scholar] [CrossRef]
- Önal, M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Appl. Clay Sci. 2007, 37, 74–80. [Google Scholar] [CrossRef]
- Volzone, C.; Cesio, A.M. Thermal behaviour of Titanium in host matrix clay. Mat. Res. 2009, 12, 191–196. [Google Scholar] [CrossRef]
- Calarge, L.M.; Meunier, A.; Formoso, M.L.L. A bentonite bed in the Aceguà (RS, Brazil) and Melo (Uruguay) areas: A highly crystallized montmorillonite. J. S. Am. Earth Sci. 2003, 16, 187–198. [Google Scholar] [CrossRef]
- Betega de Paiva, L.; Morales, A.R.; Valenzuela Díaz, F.R. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Bijang, C.; Wahab, A.W.; Maming; Ahmad, A.; Taba, P. Design of Bentonite acid modified electrodes in cyanide biosensors. Int. J. Mater. Sci Appl. 2015, 4, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Broekhoff, J.C.P. Mesopore determination from nitrogen sorption isotherms: Fundamentals, scope, limitations. Stud. Surf. Sci. Catal. 1979, 3, 663–684. [Google Scholar] [CrossRef]
- Shields, J.E.; Lowell, S.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publisher: Boston, MA, USA, 2004; pp. 43–45. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Touaa, N.D.; Bouberka, Z.; Gherdaoui, C.; Supiot, P.; Roussel, P.; Pierlot, C.; Maschke, U. Titanium and iron-modified delaminated muscovite as photocatalyst for enhanced degradation of Tetrabromobisphenol A by visible light. Funct. Mater. Lett. 2020, 13, 2051008. [Google Scholar] [CrossRef]
- Andrunik, M.; Bajda, T. Modification of Bentonite with cationic and nonionic surfactants: Structural and textural features. Materials 2019, 12, 3772. [Google Scholar] [CrossRef] [Green Version]
- Al-Essa, K. Activation of Jordanian Bentonite by hydrochloric acid and its potential for olive mill wastewater enhanced treatment. J. Chem. 2018, 8385692. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela Díaz, F.R.; De Souza, S.P. Studies on the acid activation of Brazilian smectitic clays. Quim. Nova 2001, 24, 345–353. [Google Scholar] [CrossRef]
- Haounati, R.; Ouachtak, H.; El Haouti, R.; Akhouairi, S.; Largo, F.; Akbal, F.; Benlhachemi, A.; Jada, A.; Addi, A.A. Elaboration and properties of a new SDS/ CTAB@Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Sep. Purif. Technol. 2021, 255, 117335. [Google Scholar] [CrossRef]
- Ajemba, R. Enhancement of physicochemical properties of NteJe clay to increase its bleaching performance using acid activation. Int. J. Eng. Res. Appl. (IJERA) 2012, 2, 281–288. [Google Scholar]
- Fil, B.A.; Yilmaz, M.T.; Bayar, S.; Elkoca, M.T. Investigation of adsorption Astrazon Red Violet 3RN (Basic Violet 16) dyestuff onto Montmorillonite Clay. Braz. J. Chem. Eng. 2014, 31, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wu, H.; Dong, F.; Wang, L.; Wang, Z.; Xiao, J. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Miner. Eng. 2013, 41, 41–45. [Google Scholar] [CrossRef]
- Daud, N.K.; Hameed, B.H. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst. J. Hazard. Mater. 2010, 176, 938–944. [Google Scholar] [CrossRef]
- Benguella, B.; Yacouta-Nour, A. Elimination des colorants acides en solution aqueuse par la Bentonite et le Kaolin. C. R. Chim. 2009, 12, 762–771. [Google Scholar] [CrossRef]
- Bhakta, J.N.; Munekage, Y. Identification of potential soil adsorbent for the removal of hazardous metals from aqueous phase. Int. J. Environ. Sci. Technol. 2013, 10, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, A.S.; Ozcan, A. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interface Sci. 2004, 276, 39–46. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A. Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite. J. Hazard. Mater. 2008, 160, 173–180. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of congo red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Zaker, Y.; Hossain, M.A.; Islam, T.S.A. Adsorption kinetics of methylene blue onto clay fractionated from Bijoypur soil, Bangladesh. Res. J. Chem. Sci. 2013, 3, 65–72. [Google Scholar]
- Rusmin, R.; Sarkar, B.; Liu, Y.; McClure, S.; Naidu, R. Structural evolution of chitosan-palygorskite composites and removal of aqueous lead by composite beads. Appl. Surf. Sci. 2015, 353, 363–375. [Google Scholar] [CrossRef]
- Arulkumar, M.; Sathishkumar, P.; Palvannan, T. Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J. Hazard. Mater. 2011, 186, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Dubey, S.; Gautam, R.V.; Chattopadhyaya, M.C.; Sharma, Y.C. Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab. J. Chem. 2019, 12, 5339–5354. [Google Scholar] [CrossRef]
- Dev, V.V.; Wilson, B.; Nair, K.K.; Antony, S.; Anoop Krishnan, K. Response surface modeling of Orange G adsorption onto surface tuned ragi husk. Colloids Interface Sci. Commun. 2021, 41, 100363. [Google Scholar] [CrossRef]
- Umar, A.; Sanagi, M.M.; Abu Naim, A.; Wan Ibrahim, W.N.; Abdul Keyon, A.S.; Wan Ibrahim, W.A. Removal of Orange G from aqueous solutions by Polystyrene-modified Chitin. J. Teknol. (Sci. Eng.) 2017, 79, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200. [Google Scholar] [CrossRef]
- Largo, F.; Haounati, R.; Akhouairi, S.; Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Hafid, N.; Santos, D.M.F.; Akbal, F.; Kuleyin, A.; et al. Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies. J. Mol. Liq. 2020, 318, 114247. [Google Scholar] [CrossRef]
- Ouachtak, H.; Akhouairi, S.; Addi, A.A.; Akbour, R.A.; Jada, A.; Douch, J.; Hamdani, M. Mobility and retention of phenolic acids through a goethite-coated quartz sand column. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 9–19. [Google Scholar] [CrossRef]
- Whitby, C.P.; Scales, P.J.; Grieser, F.; Healy, T.W.; Nishimura, S.; Tateyama, H. The adsorption of dodecyltrimethylammonium bromide on mica in aqueous solution studied by X-ray diffraction and atomic force microscopy. J. Colloid Interface Sci. 2001, 235, 350–357. [Google Scholar] [CrossRef]
- Abidi, N.; Duplay, J.; Jada, A.; Errais, E.; Ghazi, M.; Semhi, K.; Trabelsi-Ayadi, M. Removal of anionic dye from textile industries effluents by using Tunisian clays as adsorbents. Ζeta potential and streaming-induced potential measurements. C. R. Chim. 2019, 22, 113–125. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—Kinetic study and equilibrium isotherm analyses. Dyes Pigm. 2006, 69, 210–223. [Google Scholar] [CrossRef]
- Chinoune, K.; Bentaleb, K.; Bouberka, Z.; Nadim, A.; Maschke, U. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl. Clay Sci. 2016, 123, 64–75. [Google Scholar] [CrossRef]
Clay Sample | Basal Spacing (Å) | SBET (m²/g) | CEC (meq/100 g) |
---|---|---|---|
Bentonite | 12.72 | 32.79 | 101.03 |
B-Act | 15.30 | 469.83 | 29.80 |
B-CTAB | 20.93 | 3.79 | n.d |
B-Act-CTAB100 | 14.95 | 267.72 | 1.11 |
B-Act-CTAB300 | 17.58 | 111.15 | 22.04 |
Samples | S(BET) (m2.g−1) | SLangmuir (m2.g−1) | Stot (m2.g−1) | Sext (m2.g−1) | Vtot TPV (cm³.g−1) | VµP (cm3.g−1) | SµP (m².g−1) | APD (nm) |
---|---|---|---|---|---|---|---|---|
Bentonite | 32.8 | 45.3 | 18.6 | 28.4 | 0.074 | 0.001 | 3.4 | 12.7 |
B-CTAB | 3.8 | 5.7 | 2.5 | 2.1 | 0.034 | 0.0008 | 1.8 | 39.9 |
B-Act | 469.8 | 669.6 | 271.3 | 409.3 | 0.401 | 0.028 | 60.5 | 4.6 |
B-Act-CTAB100 | 267.7 | 385.9 | 147.7 | 279.5 | 0.316 | −0.008 | nd | 5.3 |
B-Act-CTAB300 | 111.2 | 163.9 | 59.9 | 140.3 | 0.171 | −0.016 | nd | 5.8 |
Adsorbents | qe (exp) (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
k1 (min−1) | qe (cal) (mg/g) | R2 | k2 (g/mg min) | qe (cal) (mg/g) | R2 | ||
B-CTAB | 28.94 | 0.120 | 28.86 | 0.892 | 0.0170 | 29.31 | 0.916 |
B-Act-CTAB300 | 52.40 | 0.699 | 51.71 | 0.999 | 0.0189 | 52.79 | 0.991 |
B-Act-CTAB100 | 6.32 | 0.093 | 6.58 | 0.976 | 0.0762 | 6.55 | 0.980 |
Isotherms | Parameters | Adsorbents | ||
---|---|---|---|---|
B-CTAB | B-Act-CTAB100 | B-Act-CTAB300 | ||
Langmuir | qL,max (mg/g) | 31.5 | 12.8 | 102.8 |
bL (L/mg) | 0.12 | 0.011 | 0.12 | |
R² | 0.944 | 0.958 | 0.940 | |
RMSE | 3.5 | 0.12 | 72.97 | |
Freundlich | kf (mg/g)1−1/n | 6.45 | 0.30 | 18.67 |
1/n | 0.38 | 0.68 | 0.39 | |
R² | 0.927 | 0.912 | 0.906 | |
RMSE | 4.55 | 0.26 | 108.1 | |
Sips (L-F) | qSmax (mg/g) | 29.8 | 6.8 | 103.7 |
bS (L/mg) | 0.12 | 0.0018 | 0.1 | |
β | 1.05 | 1.82 | 1.05 | |
R² | 0.930 | 0.996 | 0.946 | |
RMSE | 4.41 | 0.013 | 62.8 |
Adsorbent | qmax (mg/g) | Adsorbent Dosage (g/L) | Reference |
---|---|---|---|
Activated carbon of Thespesia populnea pods | 9.129 | 8 | [63] |
γ- alumina nanoparticles | 93.3 | 1 | [64] |
Formaldehyde modified Ragi husk | 14.6 | 2 | [65] |
Raw Chitin | 15.42 | 10 | [66] |
Polystyrene-modified Chitin | 17.86 | 10 | [66] |
Magnetic graphene oxide nanocomposite | 20.85 | 1 | [67] |
B-CTAB | 31.49 | 1 | Present work |
B-Act-CTAB100 | 12.77 | 1 | Present work |
B-Act-CTAB300 | 102.80 | 1 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taibi, Z.; Bentaleb, K.; Bouberka, Z.; Pierlot, C.; Vandewalle, M.; Volkringer, C.; Supiot, P.; Maschke, U. Adsorption of Orange G Dye on Hydrophobic Activated Bentonite from Aqueous Solution. Crystals 2023, 13, 211. https://doi.org/10.3390/cryst13020211
Taibi Z, Bentaleb K, Bouberka Z, Pierlot C, Vandewalle M, Volkringer C, Supiot P, Maschke U. Adsorption of Orange G Dye on Hydrophobic Activated Bentonite from Aqueous Solution. Crystals. 2023; 13(2):211. https://doi.org/10.3390/cryst13020211
Chicago/Turabian StyleTaibi, Zohra, Kahina Bentaleb, Zohra Bouberka, Christel Pierlot, Maxence Vandewalle, Christophe Volkringer, Philippe Supiot, and Ulrich Maschke. 2023. "Adsorption of Orange G Dye on Hydrophobic Activated Bentonite from Aqueous Solution" Crystals 13, no. 2: 211. https://doi.org/10.3390/cryst13020211
APA StyleTaibi, Z., Bentaleb, K., Bouberka, Z., Pierlot, C., Vandewalle, M., Volkringer, C., Supiot, P., & Maschke, U. (2023). Adsorption of Orange G Dye on Hydrophobic Activated Bentonite from Aqueous Solution. Crystals, 13(2), 211. https://doi.org/10.3390/cryst13020211