Li-Rich Layered Oxides: Structure and Doping Strategies to Enable Co-Poor/Co-Free Cathodes for Li-Ion Batteries
Abstract
:1. Introduction
2. Structure and Reaction Mechanism
- (a)
- (1 − x)Li2MnO3·xLiMO2, as nano-composite of and ;
- (b)
- Li1+xM1−xO2, as a single solid solution.
3. Open Challenges for the Development of LRLOs
4. Progresses on Doping Strategies for LRLOs
4.1. Co-Poor LRLOs
4.2. Co-Free LRLOs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haas, J.; Cebulla, F.; Cao, K.; Nowak, W.; Palma-Behnke, R.; Rahmann, C.; Mancarella, P. Challenges and Trends of Energy Storage Expansion Planning for Flexibility Provision in Low-Carbon Power Systems—A Review. Renew. Sustain. Energy Rev. 2017, 80, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Winfield, M.; Shokrzadeh, S.; Jones, A. Energy Policy Regime Change and Advanced Energy Storage: A Comparative Analysis. Energy Policy 2018, 115, 572–583. [Google Scholar] [CrossRef]
- Camargos, P.H.; dos Santos, P.H.J.; dos Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-Ion Battery Categories for Electric Vehicle Applications: A Review of State of the Art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Grey, C.P.; Hall, D.S. Prospects for Lithium-Ion Batteries and beyond—A 2030 Vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef] [PubMed]
- Finegan, D.P.; Squires, I.; Dahari, A.; Kench, S.; Jungjohann, K.L.; Cooper, S.J. Machine-Learning-Driven Advanced Characterization of Battery Electrodes. ACS Energy Lett. 2022, 7, 4368–4378. [Google Scholar] [CrossRef]
- Bielewski, M.; Pfrang, A.; Bobba, S.; Kronberga, A.; Georgakaki, A.; Letout, S.; Grabowska, M. Clean Energy Technology Observatory, Batteries for Energy Storage in the European Union: Status Report on Technology Development, Trends, Value Chains and Markets; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Tolganbek, N.; Yerkinbekova, Y.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Current State of High Voltage Olivine Structured LiMPO4 Cathode Materials for Energy Storage Applications: A Review. J. Alloys Compd. 2021, 882, 160774. [Google Scholar] [CrossRef]
- Casas-Cabanas, M.; Ponrouch, A.; Palacín, M.R. Blended Positive Electrodes for Li-Ion Batteries: From Empiricism to Rational Design. Isr. J. Chem. 2021, 61, 26–37. [Google Scholar] [CrossRef]
- Mohamed, N.; Allam, N.K. Recent Advances in the Design of Cathode Materials for Li-Ion Batteries. RSC Adv. 2020, 10, 21662–21685. [Google Scholar] [CrossRef]
- Nie, L.; Chen, S.; Liu, W. Challenges and Strategies of Lithium-Rich Layered Oxides for Li-Ion Batteries. Nano Res. 2022, 16, 391–402. [Google Scholar] [CrossRef]
- Yang, J.; Niu, Y.; Wang, X.; Xu, M. A Review on the Electrochemical Reaction of Li-Rich Layered Oxide Materials. Inorg. Chem. Front. 2021, 8, 4300–4312. [Google Scholar] [CrossRef]
- Li, W.; Song, B.; Manthiram, A. High-Voltage Positive Electrode Materials for Lithium-Ion Batteries. Chem. Soc. Rev. 2017, 46, 3006–3059. [Google Scholar] [CrossRef]
- Jarvis, K.A.; Deng, Z.; Allard, L.F.; Manthiram, A.; Ferreira, P.J. Understanding Structural Defects in Lithium-Rich Layered Oxide Cathodes. J. Mater. Chem. 2012, 22, 11550–11555. [Google Scholar] [CrossRef]
- Hwang, J.; Myeong, S.; Jin, W.; Jang, H.; Nam, G.; Yoon, M.; Kim, S.H.; Joo, S.H.; Kwak, S.K.; Kim, M.G.; et al. Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides. Adv. Mater. 2020, 32, e2001944. [Google Scholar] [CrossRef]
- Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM. Chem. Mater. 2009, 21, 4216–4222. [Google Scholar] [CrossRef]
- Hong, J.; Gwon, H.; Jung, S.-K.; Ku, K.; Kang, K. Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. J. Electrochem. Soc. 2015, 162, A2447–A2467. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Johnson, C.S.; Vaughey, J.T.; Li, N.; Hackney, S.A. Advances in Manganese-Oxide “composite” Electrodes for Lithium-Ion Batteries. J. Mater. Chem. 2005, 15, 2257–2267. [Google Scholar] [CrossRef]
- Wen, J.G.; Bareño, J.; Lei, C.H.; Kang, S.H.; Balasubramanian, M.; Petrov, I.; Abraham, D.P. Analytical Electron Microscopy of Li1.2Co0.4Mn0.4O2 for Lithium-Ion Batteries. Solid State Ion. 2011, 182, 98–107. [Google Scholar] [CrossRef]
- Gu, M.; Genc, A.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.; Baer, D.R.; Zhang, J.G.; Browning, N.D.; Liu, J.; et al. Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries. Chem. Mater. 2013, 25, 2319–2326. [Google Scholar] [CrossRef]
- Amalraj, F.; Kovacheva, D.; Talianker, M.; Zeiri, L.; Grinblat, J.; Leifer, N.; Goobes, G.; Markovsky, B.; Aurbach, D. Integrated Materials XLi2MnO3⋅(1−x)LiMn1/3Ni1/3Co1/3O2 (X = 0.3, 0.5, 0.7) Synthesized. J. Electrochem. Soc. 2010, 157, A1121. [Google Scholar] [CrossRef]
- Nayak, P.K.; Yang, L.; Pollok, K.; Langenhorst, F.; Aurbach, D.; Adelhelm, P. Investigation of Li1.17Ni0.20Mn0.53Co0.10O2 as an Interesting Li- and Mn-Rich Layered Oxide Cathode Material through Electrochemistry, Microscopy, and In Situ Electrochemical Dilatometry. ChemElectroChem 2019, 6, 2812–2819. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Z.; Dahn, J.R. Lack of Cation Clustering in Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 < x ≤ 1/2) and Li[CrXLi(1−x)/3Mn(2−2x)/3]O2 (0 < x < 1). Chem. Mater. 2003, 15, 3214–3220. [Google Scholar] [CrossRef]
- Koga, H.; Croguennec, L.; Mannessiez, P.; Ménétrier, M.; Weill, F.; Bourgeois, L.; Duttine, M.; Suard, E.; Delmas, C. Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure. J. Phys. Chem. C 2012, 116, 13497–13506. [Google Scholar] [CrossRef]
- Jarvis, K.A.; Deng, Z.; Allard, L.F.; Manthiram, A.; Ferreira, P.J. Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution. Chem. Mater. 2011, 23, 3614–3621. [Google Scholar] [CrossRef]
- Ates, M.N.; Mukerjee, S.; Abraham, K.M. A High Rate Li-Rich Layered MNC Cathode Material for Lithium-Ion Batteries. RSC Adv. 2015, 5, 27375–27386. [Google Scholar] [CrossRef]
- Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Structure of Li2MnO3 with Different Degrees of Defects. Solid State Ion. 2010, 180, 1652–1659. [Google Scholar] [CrossRef]
- Lei, C.H.; Bareño, J.; Wen, J.G.; Petrov, I.; Kang, S.H.; Abraham, D.P. Local Structure and Composition Studies of Li1.2Ni0.2Mn0.6O2 by Analytical Electron Microscopy. J. Power Sources 2008, 178, 422–433. [Google Scholar] [CrossRef]
- Tuccillo, M.; Costantini, A.; Celeste, A.; García, A.B.M.; Pavone, M.; Paolone, A.; Palumbo, O.; Brutti, S. NAi/Li Antisite Defects in the Li1.2Ni0.2Mn0.6O2 Li-Rich Layered Oxide: A DFT Study. Crystals 2022, 12, 723. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, S.; Liao, J.; Wang, S.; He, X.; Pan, B.; He, H.; Chen, C. Facilitating Lithium-Ion Diffusion in Layered Cathode Materials by Introducing Li+/Ni2+ Antisite Defects for High-Rate Li-Ion Batteries. Research 2019, 2019, 2198906. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M. Enhanced Electrochemical Performance of Li-Rich Cathode Materials through Microstructural Control. Phys. Chem. Chem. Phys. 2018, 20, 23112–23122. [Google Scholar] [CrossRef]
- Matsunaga, T.; Komatsu, H.; Shimoda, K.; Minato, T.; Yonemura, M.; Kamiyama, T.; Kobayashi, S.; Kato, T.; Hirayama, T.; Ikuhara, Y.; et al. Dependence of Structural Defects in Li2MnO3 on Synthesis Temperature. Chem. Mater. 2016, 28, 4143–4150. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Zhang, P.; Cooper, A.J.; Abdelkader, A.M.; Ren, X.; Deng, L. Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 Nanotubes for High-Performance Cathodes in Li-Ion Batteries. J. Power Sources 2016, 311, 35–41. [Google Scholar] [CrossRef]
- Buchholz, D.; Li, J.; Passerini, S.; Aquilanti, G.; Wang, D.; Giorgetti, M. X-Ray Absorption Spectroscopy Investigation of Lithium-Rich, Cobalt-Poor Layered-Oxide Cathode Material with High Capacity. ChemElectroChem 2015, 2, 85–97. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. Understanding the Anomalous Capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J. Electrochem. Soc. 2002, 149, A815. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, K.; Zhang, J.; Sun, B.; Wang, G. Reaction Mechanisms of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Batteries. Angew. Chem.—Int. Ed. 2021, 60, 2208–2220. [Google Scholar] [CrossRef] [PubMed]
- Strehle, B.; Kleiner, K.; Jung, R.; Chesneau, F.; Mendez, M.; Gasteiger, H.A.; Piana, M. The Role of Oxygen Release from Li- and Mn-Rich Layered Oxides during the First Cycles Investigated by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2017, 164, A400–A406. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.R.; Holzapfel, M.; Nová, P.; Johnson, C.S.; Kang, S.-H.; Thackeray, M.M.; Bruce, P.G. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698. [Google Scholar] [CrossRef]
- Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.P.; Vezin, H.; Sougrati, M.T.; Doublet, M.L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Reversible Anionic Redox Chemistry in High-Capacity Layered-Oxide Electrodes. Nat. Mater. 2013, 12, 827–835. [Google Scholar] [CrossRef]
- Sathiya, M.; Ramesha, K.; Rousse, G.; Foix, D.; Gonbeau, D.; Prakash, A.S.; Doublet, M.L.; Hemalatha, K.; Tarascon, J.M. High Performance Li2Ru1−yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding. Chem. Mater. 2013, 25, 1121–1131. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Direct Visualization of the Reversible O2−/O− Redox Process in Li-Rich Cathode Materials. Adv. Mater. 2018, 30, 1705197. [Google Scholar] [CrossRef]
- Chen, H.; Islam, M.S. Lithium Extraction Mechanism in Li-Rich Li2MnO3 Involving Oxygen Hole Formation and Dimerization. Chem. Mater. 2016, 28, 6656–6663. [Google Scholar] [CrossRef]
- Luo, K.; Roberts, M.R.; Guerrini, N.; Tapia-Ruiz, N.; Hao, R.; Massel, F.; Pickup, D.M.; Ramos, S.; Liu, Y.S.; Guo, J.; et al. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2. J. Am. Chem. Soc. 2016, 138, 11211–11218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, K.; Roberts, M.R.; Hao, R.; Guerrini, N.; Pickup, D.M.; Liu, Y.S.; Edström, K.; Guo, J.; Chadwick, A.V.; Duda, L.C.; et al. Charge-Compensation in 3d-Transition-Metal-Oxide Intercalation Cathodes through the Generation of Localized Electron Holes on Oxygen. Nat. Chem. 2016, 8, 684–691. [Google Scholar] [CrossRef]
- Gent, W.E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S.J.; Stone, K.H.; McIntire, M.; Hong, J.; Song, J.H.; et al. Coupling between Oxygen Redox and Cation Migration Explains Unusual Electrochemistry in Lithium-Rich Layered Oxides. Nat. Commun. 2017, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
- Fell, C.R.; Qian, D.; Carroll, K.J.; Chi, M.; Jones, J.L.; Meng, Y.S. Correlation between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides during the First Electrochemical Cycle. Chem. Mater. 2013, 25, 1621–1629. [Google Scholar] [CrossRef]
- Zuo, W.; Luo, M.; Liu, X.; Wu, J.; Liu, H.; Li, J.; Winter, M.; Fu, R.; Yang, W.; Yang, Y. Li-Rich Cathodes for Rechargeable Li-Based Batteries: Reaction Mechanisms and Advanced Characterization Techniques. Energy Environ. Sci. 2020, 13, 4450–4497. [Google Scholar] [CrossRef]
- Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J.M. Fundamental Interplay between Anionic/Cationic Redox Governing the Kinetics and Thermodynamics of Lithium-Rich Cathodes. Nat. Commun. 2017, 8, 2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.; Huang, W.; Chu, S.; Qian, B.; Liu, L.; Xu, W. Dynamic Structural Evolution of Oxygen Vacancies in Lithium Rich Layered Composites Cathodes for Li-Ion Batteries. Mater. Today Phys. 2021, 18, 100403. [Google Scholar] [CrossRef]
- Cui, S.L.; Wang, Y.Y.; Liu, S.; Li, G.R.; Gao, X.P. Evolution Mechanism of Phase Transformation of Li-Rich Cathode Materials in Cycling. Electrochim. Acta 2019, 328, 135109. [Google Scholar] [CrossRef]
- Xu, B.; Fell, C.R.; Chi, M.; Meng, Y.S. Identifying Surface Structural Changes in Layered Li-Excess Nickel Manganese Oxides in High Voltage Lithium Ion Batteries: A Joint Experimental and Theoretical Study. Energy Environ. Sci. 2011, 4, 2223. [Google Scholar] [CrossRef]
- Boulineau, A.; Simonin, L.; Colin, J.F.; Bourbon, C.; Patoux, S. First Evidence of Manganese-Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 2013, 13, 3857–3863. [Google Scholar] [CrossRef]
- Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C. Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 2013, 160, A786–A792. [Google Scholar] [CrossRef]
- Koga, H.; Croguennec, L.; Ménétrier, M.; Mannessiez, P.; Weill, F.; Delmas, C. Different Oxygen Redox Participation for Bulk and Surface: A Possible Global Explanation for the Cycling Mechanism of Li1.20Mn 0.54Co0.13Ni0.13O2. J. Power Sources 2013, 236, 250–258. [Google Scholar] [CrossRef]
- Celeste, A.; Girardi, F.; Gigli, L.; Pellegrini, V.; Silvestri, L.; Brutti, S. Impact of Overlithiation and Al Doping on the Battery Performance of Li-Rich Layered Oxide Materials. Electrochim. Acta 2022, 428, 140737. [Google Scholar] [CrossRef]
- Celeste, A.; Brescia, R.; Gigli, L.; Plaisier, J.; Pellegrini, V.; Silvestri, L.; Brutti, S. Unravelling Structural Changes of the Li1.2Mn0.54Ni0.13Co0.13O2 Lattice upon Cycling in Lithium Cell. Mater. Today Sustain. 2022, 21, 100277. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Robertson, A.D.; Bruce, P.G. Overcharging Manganese Oxides: Extracting Lithium beyond Mn4+. J. Power Sources 2005, 146, 275–280. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Ma, J.; Wang, Z.; Chen, L. Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations. Chem. Mater. 2015, 27, 3456–3461. [Google Scholar] [CrossRef]
- Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.W.; Xin, H.L.; Jaye, C.; Fischer, D.A.; et al. Evolution of Redox Couples in Li- and Mn-Rich Cathode Materials and Mitigation of Voltage Fade by Reducing Oxygen Release. Nat. Energy 2018, 3, 690–698. [Google Scholar] [CrossRef]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D.R.; Zhang, J.G.; et al. Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano 2013, 7, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Seo, D.H.; Kim, S.W.; Gwon, H.; Oh, S.T.; Kang, K. Structural Evolution of Layered Li1.2Ni0.2Mn0.6O2 upon Electrochemical Cycling in a Li Rechargeable Battery. J. Mater. Chem. 2010, 20, 10179–10186. [Google Scholar] [CrossRef]
- Yin, W.; Grimaud, A.; Rousse, G.; Abakumov, A.M.; Senyshyn, A.; Zhang, L.; Trabesinger, S.; Iadecola, A.; Foix, D.; Giaume, D.; et al. Structural Evolution at the Oxidative and Reductive Limits in the First Electrochemical Cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 2020, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.D.; Bruce, P.G. Overcapacity of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 Electrodes. Electrochem. Solid-State Lett. 2004, 7, A294–A298. [Google Scholar] [CrossRef]
- Committee of the Regions and the European Investment Bank on the Implementation of the Strategic Action Plan on Batteries: Building a Strategic Battery Value Chain in Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019DC0176&rid=4 (accessed on 9 April 2019).
- GROW—Internal Market, D.D. 245 Final COMMISSION STAFF WORKING DOCUMENT Report on Raw Materials for Battery Applications. Available online: https://www.europarl.europa.eu/doceo/document/A-9-2022-0031_EN.html (accessed on 17 May 2018).
- Kugel’, K.I.; Khomskii, D.I. The Jahn-Teller effect and magnetism: Transition metal compounds. Sov. Phys. Usp. 1982, 25, 231. [Google Scholar] [CrossRef]
- Tuccillo, M.; Mei, L.; Palumbo, O.; Muñoz-García, A.B.; Pavone, M.; Paolone, A.; Brutti, S. Replacement of Cobalt in Lithium-Rich Layered Oxides by n-Doping: A Dft Study. Appl. Sci. 2021, 11, 10545. [Google Scholar] [CrossRef]
- Kou, J.; Chen, L.; Su, Y.; Bao, L.; Wang, J.; Li, N.; Li, W.; Wang, M.; Chen, S.; Wu, F. Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 17910–17918. [Google Scholar] [CrossRef]
- Ramesha, R.N.; Bosubabu, D.; Karthick Babu, M.G.; Ramesha, K. Tuning of Ni, Mn, and Co (NMC) Content in 0.4(LiNixMnyCozO2)·0.4(Li2MnO3) toward Stable High-Capacity Lithium-Rich Cathode Materials. ACS Appl. Energy Mater. 2020, 3, 10872–10881. [Google Scholar] [CrossRef]
- Redel, K.; Kulka, A.; Plewa, A.; Molenda, J. High-Performance Li-Rich Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2019, 166, A5333–A5342. [Google Scholar] [CrossRef]
- Hamad, K.I.; Xing, Y. Effect of Cobalt and Nickel Contents on the Performance of Lithium Rich Materials Synthesized in Glycerol Solvent. J. Electrochem. Soc. 2018, 165, A2470–A2475. [Google Scholar] [CrossRef]
- Bao, L.; Yang, Z.; Chen, L.; Su, Y.; Lu, Y.; Li, W.; Yuan, F.; Dong, J.; Fang, Y.; Ji, Z.; et al. The Effects of Trace Yb Doping on the Electrochemical Performance of Li-Rich Layered Oxides. ChemSusChem 2019, 12, 2294–2301. [Google Scholar] [CrossRef]
- Kou, Y.; Han, E.; Zhu, L.Z.; Liu, L.; Zhang, Z. The Effect of Ti Doping on Electrochemical Properties of Li1.167Ni0.4Mn0.383Co0.05O2 for Lithium-Ion Batteries. Solid State Ion. 2016, 296, 154–157. [Google Scholar] [CrossRef]
- Guo, H.; Xia, Y.; Zhao, H.; Yin, C.; Jia, K.; Zhao, F.; Liu, Z. Stabilization Effects of Al Doping for Enhanced Cycling Performances of Li-Rich Layered Oxides. Ceram. Int. 2017, 43, 13845–13852. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, H.L. Synthesis and Electrochemical Performance of Lithium-Rich Cathode Material Li[Li0.2Ni0.15Mn0.55Co0.1−xAlx]O2. Electrochim. Acta 2016, 191, 263–269. [Google Scholar] [CrossRef]
- Dong, S.; Zhou, Y.; Hai, C.; Zeng, J.; Sun, Y.; Shen, Y.; Li, X.; Ren, X.; Sun, C.; Zhang, G.; et al. Understanding Electrochemical Performance Improvement with Nb Doping in Lithium-Rich Manganese-Based Cathode Materials. J. Power Sources 2020, 462, 228185. [Google Scholar] [CrossRef]
- Liu, X.; Yu, B.; Wang, M.; Jin, Y.; Fu, Z.; Chen, J.; Ma, Z.; Guo, B.; Huang, Y.; Li, X. Electrochemical Performances of Niobium-Doped New Spherical Low-Cobalt Li-Rich Mn-Based Li1.14Mn0.476Ni0.254Co0.048Al0.016O2 Cathode. Mater. Today Commun. 2022, 32, 104170. [Google Scholar] [CrossRef]
- Nayak, P.K.; Grinblat, J.; Levi, M.; Haik, O.; Levi, E.; Aurbach, D. Effect of Fe in Suppressing the Discharge Voltage Decay of High Capacity Li-Rich Cathodes for Li-Ion Batteries. J. Solid State Electrochem. 2015, 19, 2781–2792. [Google Scholar] [CrossRef]
- Yi, T.F.; Li, Y.M.; Cai, X.D.; Yang, S.Y.; Zhu, Y.R. Fe-Stabilized Li-Rich Layered Li1.2Mn0.56Ni0.16Co0.08O2 Oxide as a High Performance Cathode for Advanced Lithium-Ion Batteries. Mater. Today Energy 2017, 4, 25–33. [Google Scholar] [CrossRef]
- Medvedeva, A.; Makhonina, E.; Pechen, L.; Politov, Y.; Rumyantsev, A.; Koshtyal, Y.; Goloveshkin, A.; Maslakov, K.; Eremenko, I. Effect of Al and Fe Doping on the Electrochemical Behavior of Li1.2Ni0.133Mn0.534Co0.133O2 Li-Rich Cathode Material. Materials 2022, 15, 8225. [Google Scholar] [CrossRef]
- Nisar, U.; Amin, R.; Shakoor, A.; Essehli, R.; Al-Qaradawi, S.; Kahraman, R.; Belharouak, I. Synthesis and Electrochemical Characterization of Cr-Doped Lithium-Rich Li1.2Ni0.16Mn0.56Co0.08-XCrxO2 Cathodes. Emergent Mater. 2018, 1, 155–164. [Google Scholar] [CrossRef]
- Ghorbanzadeh, M.; Allahyari, E.; Riahifar, R.; Hadavi, S.M.M. Effect of Al and Zr Co-Doping on Electrochemical Performance of Cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-Ion Battery. J. Solid State Electrochem. 2018, 22, 1155–1163. [Google Scholar] [CrossRef]
- Celeste, A.; Brescia, R.; Greco, G.; Torelli, P.; Mauri, S.; Silvestri, L.; Pellegrini, V.; Brutti, S. Pushing Stoichiometries of Lithium-Rich Layered Oxides Beyond Their Limits. ACS Appl. Energy Mater. 2022, 5, 1905–1913. [Google Scholar] [CrossRef]
- Feng, Z.; Song, H.; Li, Y.; Lyu, Y.; Xiao, D.; Guo, B. Adjusting Oxygen Redox Reaction and Structural Stability of Li- and Mn-Rich Cathodes by Zr-Ti Dual-Doping. ACS Appl. Mater. Interfaces 2022, 14, 5308–5317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Qiao, Q.Q.; Li, G.R.; Gao, X.P. PO43- Polyanion-Doping for Stabilizing Li-Rich Layered Oxides as Cathode Materials for Advanced Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2014, 2, 7454–7460. [Google Scholar] [CrossRef]
- Zhang, H.-Z.; Li, F.; Pan, G.-L.; Li, G.-R.; Gao, X.-P. The Effect of Polyanion-Doping on the Structure and Electrochemical Performance of Li-Rich Layered Oxides as Cathode for Lithium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A1899–A1904. [Google Scholar] [CrossRef]
- Kang, S.H.; Sun, Y.K.; Amine, K. Electrochemical and Ex Situ X-ray Study of Li(Li0.2Ni0.2Mn0.6)O2 Cathode Material for Li Secondary Batteries. Electrochem. Solid-State Lett. 2003, 6, A183–A186. [Google Scholar] [CrossRef]
- Rajappa Prakasha, K.; Grins, J.; Jaworski, A.; Thersleff, T.; Svensson, G.; Jøsang, L.O.; Dyrli, A.D.; Paulus, A.; de Sloovere, D.; D’Haen, J.; et al. Temperature-Driven Chemical Segregation in Co-Free Li-Rich-Layered Oxides and Its Influence on Electrochemical Performance. Chem. Mater. 2022, 34, 3637–3647. [Google Scholar] [CrossRef]
- Laisa, C.P.; Nanda Kumar, A.K.; Selva Chandrasekaran, S.; Murugan, P.; Lakshminarasimhan, N.; Govindaraj, R.; Ramesha, K. A Comparative Study on Electrochemical Cycling Stability of Lithium Rich Layered Cathode Materials Li1.2Ni0.13M0.13Mn0.54O2 Where M = Fe or Co. J. Power Sources 2016, 324, 462–474. [Google Scholar] [CrossRef]
- Wu, F.; Kim, G.T.; Kuenzel, M.; Zhang, H.; Asenbauer, J.; Geiger, D.; Kaiser, U.; Passerini, S. Elucidating the Effect of Iron Doping on the Electrochemical Performance of Cobalt-Free Lithium-Rich Layered Cathode Materials. Adv. Energy Mater. 2019, 9, 1902445. [Google Scholar] [CrossRef]
- Wei, H.; Cheng, X.; Fan, H.; Shan, Q.; An, S.; Qiu, X.; Jia, G. A Cobalt-Free Li(Li0.17Ni0.17Fe0.17Mn0.49)O2 Cathode with More Oxygen-Involving Charge Compensation for Lithium-Ion Batteries. ChemSusChem 2019, 12, 2471–2479. [Google Scholar] [CrossRef]
- Pham, H.Q.; Kondracki, Ł.; Tarik, M.; Trabesinger, S. Correlating the Initial Gas Evolution and Structural Changes to Cycling Performance of Co-Free Li-Rich Layered Oxide Cathode. J. Power Sources 2022, 527, 231181. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. Structure and Electrochemistry of Layered Li [ Cr(1/3−x/3)Mn(2/3−2x/3)]O2. J. Electrochem. Soc. 2002, 149, A1454. [Google Scholar] [CrossRef]
- Sun, Y.K.; Kim, M.G.; Kang, S.H.; Amine, K. Electrochemical Performance of Layered Li[Li0.15Ni0.275−xMgxMn0.575]O2 Cathode Materials for Lithium Secondary Batteries. J. Mater. Chem. 2003, 13, 319–322. [Google Scholar] [CrossRef]
- Wang, D.; Huang, Y.; Huo, Z.; Chen, L. Synthesize and Electrochemical Characterization of Mg-Doped Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material. Electrochim. Acta 2013, 107, 461–466. [Google Scholar] [CrossRef]
- Celeste, A.; Tuccillo, M.; Santoni, A.; Reale, P.; Brutti, S.; Silvestri, L. Exploring a Co-Free, Li-Rich Layered Oxide with Low Content of Nickel as a Positive Electrode for Li-Ion Battery. ACS Appl. Energy Mater. 2021, 4, 11290–11297. [Google Scholar] [CrossRef]
- Vanaphuti, P.; Bong, S.; Ma, L.; Ehrlich, S.; Wang, Y. Systematic Study of Different Anion Doping on the Electrochemical Performance of Cobalt-Free Lithium-Manganese-Rich Layered Cathode. ACS Appl. Energy Mater. 2020, 3, 4852–4859. [Google Scholar] [CrossRef]
- Liu, H.; He, B.; Xiang, W.; Li, Y.C.; Bai, C.; Liu, Y.P.; Zhou, W.; Chen, X.; Liu, Y.; Gao, S.; et al. Synergistic Effect of Uniform Lattice Cation/Anion Doping to Improve Structural and Electrochemical Performance Stability for Li-Rich Cathode Materials. Nanotechnology 2020, 31, 455704. [Google Scholar] [CrossRef]
- Nie, L.; Wang, Z.; Zhao, X.; Chen, S.; He, Y.; Zhao, H.; Gao, T.; Zhang, Y.; Dong, L.; Kim, F.; et al. Cation/Anion Codoped and Cobalt-Free Li-Rich Layered Cathode for High-Performance Li-Ion Batteries. Nano Lett. 2021, 21, 8370–8377. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Kang, S.H.; Johnson, C.S.; Vaughey, J.T.; Hackney, S.A. Comments on the Structural Complexity of Lithium-Rich Li1+xM1-XO2 Electrodes (M = Mn, Ni, Co) for Lithium Batteries. Electrochem. Commun. 2006, 8, 1531–1538. [Google Scholar] [CrossRef]
- Wang, C.C.; Jarvis, K.A.; Ferreira, P.J.; Manthiram, A. Effect of Synthesis Conditions on the First Charge and Reversible Capacities of Lithium-Rich Layered Oxide Cathodes. Chem. Mater. 2013, 25, 3267–3275. [Google Scholar] [CrossRef]
- Deng, Z.Q.; Manthiram, A. Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes. J. Phys. Chem. C 2011, 115, 7097–7103. [Google Scholar] [CrossRef]
- Wang, C.C.; Manthiram, A. Influence of Cationic Substitutions on the First Charge and Reversible Capacities of Lithium-Rich Layered Oxide Cathodes. J. Mater. Chem. A Mater. 2013, 1, 10209–10217. [Google Scholar] [CrossRef]
- Lee, E.; Park, J.S.; Wu, T.; Sun, C.J.; Kim, H.; Stair, P.C.; Lu, J.; Zhou, D.; Johnson, C.S. Role of Cr3+/Cr6+ Redox in Chromium-Substituted Li2MnO3·LiNi1/2Mn1/2O2 Layered Composite Cathodes: Electrochemistry and Voltage Fade. J. Mater. Chem. A Mater. 2015, 3, 9915–9924. [Google Scholar] [CrossRef]
Doping Strategies | Stoichiometry | Specific Capacity (mAhg−1) 1st Discharge Cycle | Capacity Retention (%) at Cycle (X) | |
Benchmark | Li1.2Mn0.54Ni0.13Co0.13O2 | 363 | 76% (200) | [56] |
Co-poor | ||||
Ni:Co:Mn Ratio | Li1.15Ni0.32Co0.1Mn0.55O2 | 282.2 | 90 % (10) | [68] |
Li1.2Ni0.32Co0.04Mn0.44O2 | 225 | 85% (100) | [69] | |
Li[Li0.2Mn0.6Ni0.1Co0.1]O2 | 350 | 71.4% (100) | [70] | |
Li1.2Mn0.51Ni0.0725Co0.0725O2 | 185.1 | 98% (100) | [71] | |
Yb3+ | Li1.2Ni0.13Co0.127Yb0.003 Mn0.54O2 | 219.8 | 84.4% (100) | [72] |
Ti4+ | Li1.167Ni0.36Mn0.383Co0.05Ti0.04 O2 | 186.6 | 99.4% (10) | [73] |
Al3+ | Li1.14(Ni0.136Co0.10Al0.03Mn0.544) O2 | 212 | 95.65% (100) | [74] |
Li1.2Ni0.15Mn0.55Co0.05Al0.05O2 | 231.7 | 98% (30) | [75] | |
Nb5+ | Li1.2(Ni0.13Co0.13Mn0.54)0.8Nb0.02O2 | 287.5 | 98% (300) | [76] |
Li1.14Mn0.466Ni0.249Co0.046Al0.015Nb0.02O2 | 207 | 98% (200) | [77] | |
Fe3+ | Li1.2Mn0.56Ni0.16Co0.04Fe0.04O2 | 330 | 82% (80) | [78] |
Li1.2Mn0.56Ni0.16Co0.03Fe0.05O2 | 108.9 | 96.1% (100) | [79] | |
Li1.2Ni0.133Mn0.534Co0.118Fe0.016O2 | 87.2 | 79% (100) | [80] | |
Cr3+ | Li1.2Ni0.16Mn0.56Co0.06Cr0.02 O2 | 200 | 75% (50 | [81] |
Al3+/Zr4+ | Li[Li0.2Ni0.13Co0.13Mn0.54]0.965Al0.02Zr0.015O2 | 245.5 | 98% (550) | [82] |
Li+/Al3+ | Li1.28Mn0.54Ni0.13Co0.02Al0.03O2 | 264 | 82% (200) | [83] |
Ti4+/Zr4+ | Li1.2Mn0.53Ni0.13Co0.13Ti0.01Zr0.01O2 | 204.1 | 84% (400) | [84] |
PO43− | Li(Li0.17Ni0.20Co0.05Mn0.58)O1.95 (PO43−)0.05 | 252.4 | [85] | |
SiO44−/SO42− | Li(Li0.17Ni0.20Co0.05Mn0.58)O1.95(SiO4)0.05 | 282.2 | 71% (400) | [86] |
Co-free | ||||
Li:Ni:Mn ratio | Li1.2Mn0.6Ni0.2O2 | 155 | [87] | |
Li1.1Ni0.35Mn0.55O2 | 160 | 80% (150) | [88] | |
Fe3+ | Li1.2Ni0.13Fe0.13Mn0.54O2 | 200 | 80% (100) | [89] |
Li1.2Mn0.585Ni0.185Fe0.03O2 | 232 | 70% (200) | [90] | |
Li(Li0.17Ni0.17Fe0.17Mn0.49)O2 | 231.8 | 73% (100) | [91] | |
Li1.16Ni0.19Fe0.18Mn0.46O2 | 259 | 83% (100) | [92] | |
Cr3+ | Li1.2Ni0.175Mn0.575Cr0.05O2 | 225 | [93] | |
Mg2+ | Li[Li0.15Ni0.235Mg0.04Mn0.575]O2 | 127 | 68% (50) | [94] |
Li[Li0.2Ni0.195Mn0.595Mg0.01]O2 | 140.6 | 62% (60) | [95] | |
Li+/Mn4+ | Li1.25Ni0.125Mn0.625O2 | 185 | 74% (150) | [96] |
F− | Li1.2Mn0.6Ni0.2O1.99F0.01 | 240 | 95% (100) | [97] |
Na+/PO43− | Li1.2Mn0.6Ni0.2O2Na0.01(PO4)0.01 | 264.7 | 86.7% (150) | [98] |
Fe3+/Cl− | Li1.2Mn0.585Ni0.185Fe0.03O1.98Cl0.02 | 183.9 | 86.4% (500) | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestri, L.; Celeste, A.; Tuccillo, M.; Brutti, S. Li-Rich Layered Oxides: Structure and Doping Strategies to Enable Co-Poor/Co-Free Cathodes for Li-Ion Batteries. Crystals 2023, 13, 204. https://doi.org/10.3390/cryst13020204
Silvestri L, Celeste A, Tuccillo M, Brutti S. Li-Rich Layered Oxides: Structure and Doping Strategies to Enable Co-Poor/Co-Free Cathodes for Li-Ion Batteries. Crystals. 2023; 13(2):204. https://doi.org/10.3390/cryst13020204
Chicago/Turabian StyleSilvestri, Laura, Arcangelo Celeste, Mariarosaria Tuccillo, and Sergio Brutti. 2023. "Li-Rich Layered Oxides: Structure and Doping Strategies to Enable Co-Poor/Co-Free Cathodes for Li-Ion Batteries" Crystals 13, no. 2: 204. https://doi.org/10.3390/cryst13020204
APA StyleSilvestri, L., Celeste, A., Tuccillo, M., & Brutti, S. (2023). Li-Rich Layered Oxides: Structure and Doping Strategies to Enable Co-Poor/Co-Free Cathodes for Li-Ion Batteries. Crystals, 13(2), 204. https://doi.org/10.3390/cryst13020204