Thickness Effects on Oxidation Behavior and Consequent γ’ Degradation of a High-Al Ni-Based Single Crystal Superalloy
Abstract
:1. Introduction
2. Experimental Methods
2.1. Specimen Preparation
2.2. Oxidation Tests at High Temperature
3. Results and Discussion
3.1. Thickness Effects on Oxidation Behavior at Different Temperatures
3.1.1. Oxidation Kinetics
3.1.2. Composition and Microstructure of Oxide Scale
3.1.3. Oxidation Mechanisms
Thermodynamics
Kinetics Tuned by Spallation Behavior
3.2. Composition Related Thickness Effects on Microstructural Degradation
3.2.1. Thickness Effects under Fixed Composition
3.2.2. Composition Effects in Thin-Walled Specimen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Koff, B.L. Gas turbine technology evolution: A designers perspective. J. Propuls. Power 2004, 20, 577–595. [Google Scholar] [CrossRef]
- Xu, L.; Bo, S.; Hongde, Y.; Lei, W. Evolution of Rolls-Royce air-cooled turbine blades and feature analysis. Procedia Eng. 2015, 99, 1482–1491. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, L.; Cheng, C.; Zhao, P.; Cao, T.; Guo, G.; Zhao, J. Influence of specimen thickness on the creep behavior of a directional solidification nickel-based superalloy. Vacuum 2018, 150, 105–115. [Google Scholar] [CrossRef]
- Srivastava, A.; Needleman, A. Phenomenological modeling of the effect of specimen thickness on the creep response of Ni-based superalloy single crystals. Acta Mater. 2013, 61, 6506–6516. [Google Scholar] [CrossRef]
- Srivastava, A.; Gopagoni, S.; Needleman, A.; Seetharaman, V.; Staroselsky, A.; Banerjee, R. Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy. Acta Mater. 2012, 60, 5697–5711. [Google Scholar] [CrossRef]
- Wen, Z.; Pei, H.; Li, D.; Yue, Z.; Gao, J. Thickness influence on the creep response of DD6 Ni-based single-crystal superalloy. High Temp. Mater. Process. 2016, 35, 871–880. [Google Scholar] [CrossRef]
- Brunner, M.; Bensch, M.; Völkl, R.; Affeldt, E.; Glatzel, U. Thickness influence on creep properties for Ni-based superalloy M247LC SX. Mater. Sci. Eng. A 2012, 550, 254–262. [Google Scholar] [CrossRef]
- Hüttner, R.; Gabel, J.; Glatzel, U.; Völkl, R. First creep results on thin-walled single-crystal superalloys. Mater. Sci. Eng. A 2009, 510, 307–311. [Google Scholar] [CrossRef]
- Cassenti, B.; Staroselsky, A. The effect of thickness on the creep response of thin-wall single crystal components. Mater. Sci. Eng. A 2009, 508, 183–189. [Google Scholar] [CrossRef]
- Seetharaman, V.; Cetel, A.D. Thickness debit in creep properties of PWA 1484 [A]. In Proceedings of the 10th International Symposium on Superalloys (Superalloys 2004), Champion, PA, USA, 19–23 September 2004; pp. 207–214. [Google Scholar]
- Duan, R.; Jalowicka, A.; Unocic, K.; Pint, B.A.; Huczkowski, P.; Chyrkin, A.; Grüner, D.; Pillai, R.; Quadakkers, W.J. Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230. Oxid. Met. 2017, 87, 11–38. [Google Scholar] [CrossRef]
- Bensch, M.; Konrad, C.H.; Fleischmann, E.; Rae, C.M.; Glatzel, U. Influence of oxidation on near-surface γ′ fraction and resulting creep behaviour of single crystal Ni-base superalloy M247LC SX. Mater. Sci. Eng. A 2013, 577, 179–188. [Google Scholar] [CrossRef]
- Bensch, M.; Preußner, J.; Hüttner, R.; Obigodi, G.; Virtanen, S.; Gabel, J.; Glatzel, U. Modelling and analysis of the oxidation influence on creep behaviour of thin-walled structures of the single-crystal nickel-base superalloy René N5 at 980 °C. Acta Mater. 2010, 58, 1607–1617. [Google Scholar] [CrossRef]
- Dryepondt, S.; Monceau, D.; Crabos, F.; Andrieu, E. Static and dynamic aspects of coupling between creep behavior and oxidation on MC2 single crystal superalloy at 1150 °C. Acta Mater. 2005, 53, 4199–4209. [Google Scholar] [CrossRef] [Green Version]
- Pour-Ali, S.; Tavangar, R.; Akhtari, F.; Hejazi, S. High-temperature oxidation behavior of GTD-111 Ni-based superalloy with an ultrafine-grained surface at 900 °C. Corros. Sci. 2022, 212, 110935. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, C.; Cao, T.; Zhang, L.; Zhao, J. A study on the multiple stages of oxidation kinetics in a single crystal nickel-based superalloy. Corros. Sci. 2021, 188, 109512. [Google Scholar] [CrossRef]
- Li, P.; Jin, X.; Zhao, J.; Lu, P.; Hu, N.; Liu, D.; Dong, J.; Fan, X. Oxidation behaviors and compressive strength evolution of DD6 Ni-based single-crystal superalloy at 1100 °C. Corros. Sci. 2022, 208, 110684. [Google Scholar] [CrossRef]
- Pistor, J.; Hagen, S.P.; Virtanen, S.; Körner, C. Influence of the microstructural homogeneity on the high-temperature oxidation behavior of a single crystalline Ni-base superalloy. Scr. Mater. 2022, 207, 114301. [Google Scholar] [CrossRef]
- Perez, T.; Monceau, D.; Desgranges, C. Kinetic oxidation model including the transient regime for a single crystal nickel-based superalloy over the temperature range 750–1300 °C. Corros. Sci. 2022, 206, 110485. [Google Scholar]
- Orosz, R.; Krupp, U.; Christ, H.J.; Monceau, D. The influence of specimen thickness on the high temperature corrosion behavior of CMSX-4 during thermal-cycling exposure. Oxid. Met. 2007, 68, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Bensch, M.; Sato, A.; Warnken, N.; Affeldt, E.; Reed, R.; Glatzel, U. Modelling of high temperature oxidation of alumina-forming single-crystal nickel-base superalloys. Acta Mater. 2012, 60, 5468–5480. [Google Scholar] [CrossRef]
- Sato, A.; Chiu, Y.-L.; Reed, R.C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater. 2011, 59, 225–240. [Google Scholar] [CrossRef]
- Qin, L.; Pei, Y.; Li, S.; Zhao, X.; Gong, S.; Xu, H. Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys. Corros. Sci. 2017, 129, 192–204. [Google Scholar] [CrossRef]
- Yang, T.T.; Zhou, X.; Li, S.S.; Pei, Y.L.; Gong, S.K. Cyclic oxidation behavior of Ni3Al-based single crystal alloy IC21. Rare Met. 2017, 1–7. [Google Scholar] [CrossRef]
- Akhtar, A.; Hegde, S.; Reed, R.C. The oxidation of single-crystal nickel-based superalloys. JOM 2006, 58, 37–42. [Google Scholar] [CrossRef]
- Evans, H.E. Modelling oxide spallation. Mater. High Temp. 1994, 12, 219–227. [Google Scholar] [CrossRef]
- Jedliński, J.; Bennett, M.J.; Evans, H.E. Experimental data on the spallation of protective oxide scales: A brief literature survey. Mater. High Temp. 1994, 12, 169–175. [Google Scholar] [CrossRef]
- Evans, H.E.; Lobb, R.C. Conditions for the initiation of oxide-scale cracking and spallation. Corros. Sci. 1984, 24, 209–222. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H.; Zacherl, C.L.; Mei, Z.; Shang, S.; Chen, L.-Q.; Jablonski, P.D.; Liu, Z.-K. First-principles lattice dynamics, thermodynamics, and elasticity of Cr2O3. Surf. Sci. 2012, 606, 1422–1425. [Google Scholar] [CrossRef]
- Nielsen, T.H.; Leipold, M.H. Thermal expansion of nickel oxide. J. Am. Ceram. Soc. 1965, 48, 164. [Google Scholar] [CrossRef]
- Touloukian, Y.S. Thermophysical Properties of High Temperature Solid Materials. Volume 4. Oxides and Their Solutions and Mixtures. Part 1. Simple Oxygen Compounds and Their Mixtures; Thermostatical and Electronic Properties Information Analysis Center: Lafayette, Indiana, 1966. [Google Scholar]
- Shen, Y.; Ju, Q.; Xu, G.; Du, X.; Zhang, Y.W.; Zhu, Y.; Huang, J.; Wang, T.Y.; Liu, Z. Improved oxidation resistance and excellent strength of nickel-based superalloy at 1100 °C by determining critical Cr-Al value. Mater. Lett. 2022, 328, 133226. [Google Scholar] [CrossRef]
- Yun, D.; Seo, S.; Jeong, H.; Yoo, Y.S. Effect of refractory elements and Al on the high temperature oxidation of Ni-base superalloys and modelling of their oxidation resistance. J. Alloys Compd. 2017, 710, 8–19. [Google Scholar] [CrossRef]
- Yu, H.; Ukai, S.; Hayashi, S.; Oono, N. Effect of Al content on the high-temperature oxidation of Co-20Cr-(5, 10) Al oxide dispersion strengthened superalloys. Corros. Sci. 2017, 118, 49–59. [Google Scholar] [CrossRef]
Specimen Number | Thickness (mm) | Distance from Surface (μm) * | Morphology of γ’ | Volume Fraction of γ’ (%) | Average Size of γ’ (nm) | Average Al Content (wt. %) |
---|---|---|---|---|---|---|
S01-N | 0.1 | >400 | Cubic | 82 | 450 | 7.6 |
S03-N | 0.3 | >400 | Cubic | 82 | 450 | 7.6 |
S10-N | 1.0 | >400 | Cubic | 82 | 450 | 7.6 |
S01-1 | 0.1 | 110 | Spherical + Rounded cubic | 54 | 270 | 4.4 |
S01-2 | 0.1 | 150 | Cubic | 75 | 331 | 6.2 |
S01-3 | 0.1 | 250 | Cubic | 80 | 365 | 7.0 |
Specimen Number | Residual Stress (GPa) * | ||
---|---|---|---|
900 °C, 100 h (NiO **) | 1100 °C, 100 h (Al2O3 ***) | ||
No Spallation | Less Spallation | Severe Spallation | |
S01-1 | 0.26 | −3.16 | −2.52 |
S01-2 | 0.24 | −3.35 | −2.38 |
S01-3 | 0.19 | −3.82 | −2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Guo, W.; Zhao, W.; Ru, Y.; Wang, J.; Pei, Y.; Gong, S.; Li, S. Thickness Effects on Oxidation Behavior and Consequent γ’ Degradation of a High-Al Ni-Based Single Crystal Superalloy. Crystals 2023, 13, 234. https://doi.org/10.3390/cryst13020234
Zhao H, Guo W, Zhao W, Ru Y, Wang J, Pei Y, Gong S, Li S. Thickness Effects on Oxidation Behavior and Consequent γ’ Degradation of a High-Al Ni-Based Single Crystal Superalloy. Crystals. 2023; 13(2):234. https://doi.org/10.3390/cryst13020234
Chicago/Turabian StyleZhao, Haigen, Wenqi Guo, Wenyue Zhao, Yi Ru, Junwu Wang, Yanling Pei, Shengkai Gong, and Shusuo Li. 2023. "Thickness Effects on Oxidation Behavior and Consequent γ’ Degradation of a High-Al Ni-Based Single Crystal Superalloy" Crystals 13, no. 2: 234. https://doi.org/10.3390/cryst13020234
APA StyleZhao, H., Guo, W., Zhao, W., Ru, Y., Wang, J., Pei, Y., Gong, S., & Li, S. (2023). Thickness Effects on Oxidation Behavior and Consequent γ’ Degradation of a High-Al Ni-Based Single Crystal Superalloy. Crystals, 13(2), 234. https://doi.org/10.3390/cryst13020234