First-Principle Study on Correlate Structural, Electronic and Optical Properties of Ce-Doped BaTiO3
Abstract
:1. Introduction
2. Computational Details
3. Result and Discussion
3.1. Geometry Optimization
3.2. Electronic Properties
3.3. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akedo, J. Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices. J. Therm. Spray Technol. 2008, 17, 181–198. [Google Scholar] [CrossRef]
- Choi, J.J.; Hahn, B.D.; Ryu, J.; Yoon, W.H.; Lee, B.K.; Park, D.S. Preparation and characterization of piezoelectric ceramic–polymer composite thick films by aerosol deposition for sensor application. Sens. Actuators A 2009, 153, 89–95. [Google Scholar] [CrossRef]
- Koruza, J.; Bell, A.J.; Froemling, T.; Webber, K.G.; Wang, K.; Rödel, J. Requirements for the transfer of lead-free piezoceramics into application. J. Mater. 2018, 4, 13–26. [Google Scholar] [CrossRef]
- Lee, G.J.; Kim, B.H.; Yang, S.A.; Park, J.J.; Bu, S.D.; Lee, M.K. Piezoelectric and ferroelectric properties of (Bi, Na)TiO3-(Bi, Li) TiO3-(Bi, K)TiO3 ceramics for accelerometer application. J. Am. Ceram. Soc. 2017, 100, 678–685. [Google Scholar] [CrossRef]
- Rödel, J.; Li, J.F. Lead-free piezoceramics: Status and perspectives. MRS Bull. 2018, 43, 576–580. [Google Scholar] [CrossRef]
- Shibata, K.; Wang, R.; Tou, T.; Koruza, J. Applications of lead-free piezoelectric materials. MRS Bull. 2018, 43, 612–616. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, L.; Ma, Y.; Huang, H.; He, H.; Ji, H.; Qiu, J. Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement. J. Alloys Compd. 2021, 886, 161069. [Google Scholar] [CrossRef]
- Itoh, K.; Zeng, L.Z.; Nakamura, E.; Mishima, N. Crystal structure of BaTiO3 in the cubic phase. Ferroelectrics 1985, 63, 29–37. [Google Scholar] [CrossRef]
- Shrout, T.R.; Zhang, S.J. Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 2007, 19, 113–126. [Google Scholar] [CrossRef]
- Wu, J.; Wu, W.; Xiao, D.; Wang, J.; Yang, Z.; Peng, Z.; Zhu, J. (Ba, Ca)(Ti, Zr)O3-BiFeO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 2012, 12, 534–538. [Google Scholar] [CrossRef]
- Yang, W.G.; Zhang, B.P.; Ma, N.; Zhao, L. High piezoelectric properties of BaTiO3-xLiF ceramics sintered at low temperatures. J. Eur. Ceram. Soc. 2012, 32, 899–904. [Google Scholar] [CrossRef]
- Jaita, P.; Jarupoom, P. Enhanced electric field-induced strain and electrostrictive response of lead-free BaTiO3-modified Bi0.5 (Na0.80K0.20)0.5TiO3 piezoelectric ceramics. J. Asian. Ceram. Soc. 2021, 9, 975–987. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Y.; Zou, Y.; Wang, Z. Effects of addition of BiFeO3 on phase transition and dielectric properties of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 2012, 23, 1072–1076. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Z.; Fang, F.; Wang, X.; Li, L.; Zhu, J. Significant increase of Curie temperature in nano-scale BaTiO3. Appl. Phys. Lett. 2014, 105, 182901. [Google Scholar] [CrossRef]
- Brajesh, K.; Ranjan, S.; Garg, A. Phase evolution and enhanced room temperature piezoelectric properties response of lead-free Ru doped BaTiO3 ceramic. arXiv 2021, arXiv:2112.14982. [Google Scholar]
- Ben, L.; Sinclair, D.C. Anomalous Curie temperature behavior of A-site Gd-doped BaTiO3 ceramics: The influence of strain. Appl. Phys. Lett. 2011, 98, 092907. [Google Scholar] [CrossRef]
- Sareecha, N.; Shah, W.A.; Mirza, M.L.; Maqsood, A.; Awan, M.S. Electrical investigations of Bi-doped BaTiO3 ceramics as a function of temperature. Physica B Condens. Matter. 2018, 530, 283–289. [Google Scholar] [CrossRef]
- Cernea, M.; Monnereau, O.; Llewellyn, P.; Tortet, L.; Galassi, C. Sol–gel synthesis and characterization of Ce doped-BaTiO3. J. Eur. Ceram. Soc. 2006, 26, 3241–3246. [Google Scholar] [CrossRef]
- Hwang, J.H.; Han, Y.H. Electrical properties of cerium-doped BaTiO3. J. Am. Ceram. Soc. 2001, 84, 1750–1754. [Google Scholar] [CrossRef]
- Curecheriu, L.P.; Curecheriu, L.P.; Deluca, M.; Mocanu, Z.V.; Pop, M.V.; Nica, V.; Horchidan, N.; Mitoseriu, L. Investigation of the ferroelectric–relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study. Phase Transit. 2013, 86, 703–714. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990, 41, 7895. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Fullon, R.; Acerce, M.; Petoukhoff, C.E.; Yang, J.; Chen, C.; Chhowalla, M. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv. Mater. 2017, 29, 1603995. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Rizwan, M.; Shahid, A.; Mahmood, T.; Zafar, A.A.; Aslam, I.; Adnan, N.; Cao, C.B. Effect of magnesium on structural and optical properties of CaTiO3: A DFT study. Phys. B 2019, 568, 88–91. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.; Grigoleit, S.; Sayle, D.C.; Parker, S.C.; Watson, G.W. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci. 2005, 576, 217–229. [Google Scholar] [CrossRef]
- Ali, A.; Khan, I.; Ali, Z.; Khan, F.; Ahmad, I. First-principles study of BiFeO3 and BaTiO3 in tetragonal structure. Int. J. Mod. Phys. B 2019, 33, 1950231. [Google Scholar] [CrossRef]
- German, E.; Faccio, R.; Mombrú, A.W. A DFT+ U study on structural, electronic, vibrational and thermodynamic properties of TiO2 polymorphs and hydrogen titanate: Tuning the Hubbard ‘U-term’. J. Phys. Commun. 2017, 1, 055006. [Google Scholar] [CrossRef]
- Castleton, C.; Kullgren, J.; Hermansson, K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. J. Chem. Phys. 2007, 127, 244704. [Google Scholar] [CrossRef]
- Upadhyay, S.; Upadhyay, S.; Shrivastava, J.; Solanki, A.; Choudhary, S.; Sharma, V.; Kumar, P.; Dass, S. Enhanced photoelectrochemical response of BaTiO3 with Fe doping: Experiments and first-principles analysis. J. Phys. Chem. C 2011, 115, 24373–24380. [Google Scholar] [CrossRef]
- Xie, P.; Xie, P.; Yang, F.; Li, R.; Ai, C.; Lin, C.; Lin, S. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis. Int. J. Hydrog. Energy. 2019, 44, 11695–11704. [Google Scholar] [CrossRef]
- Raengthon, N.; McCue, C.; Cann, D.P. Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3-Bi(Me)O3 compounds. J. Adv. Dielectr. 2016, 6, 1650002. [Google Scholar] [CrossRef] [Green Version]
- Evarestov, R.A.; Bandura, A.V. First-principles calculations on the four phases of BaTiO3. J. Comput. Chem. 2012, 33, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Zeng, Z.Y.; Zhao, Y.Q.; Lu, Q.; Cheng, Y. First-principles study of lattice dynamics, structural phase transition, and thermodynamic properties of barium titanate. Z. Naturforsch A 2016, 71, 759–768. [Google Scholar] [CrossRef]
- Aoyagi, S.; Kuroiwa, Y.; Sawada, A.; Yamashita, I.; Atake, T. Composite structure of BaTiO3 nanoparticle investigated by SR X-ray diffraction. J. Phys. Soc. Jpn. 2002, 71, 1218–1221. [Google Scholar] [CrossRef]
- Rizwan, M.; Ayub, A.; Shakil, M.; Usman, Z.; Gillani, S.S.A.; Jin, H.B.; Cao, C.B. Putting DFT to trial: For the exploration to correlate structural, electronic and optical properties of M-doped (M = Group I, II, III, XII, XVI) lead free high piezoelectric c-BiAlO3. J. Mater. Sci. Eng. B 2021, 264, 114959. [Google Scholar] [CrossRef]
- Ching-Prado, E. Stress dependence of structure, electronic and optical properties of BaTiO3 from WC, VdW-DF-C09 and HSE functional calculations. Ferroelectrics 2018, 535, 171–182. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, X.; Han, J.; Li, J.; Han, W. Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations. Comput. Mater. Sci. 2008, 44, 411–421. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 1955, 23, 1841–1846. [Google Scholar] [CrossRef]
- Laksari, S.; Chahed, A.; Abbouni, N.; Benhelal, O.; Abbar, B. First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2. Comput. Mater. Sci. 2006, 38, 223–230. [Google Scholar] [CrossRef]
- Sheng, X.C. The Spectrum and Optical Property of Semiconductor, 1st ed.; Science Press: Beijing, China, 1992; p. 24. [Google Scholar]
- Garcia, J.C.; Scolfaro, L.M.R.; Lino, A.T.; Freire, V.N.; Farias, G.A.; Silva, C.C.; da Silva, E.F., Jr. Structural, electronic, and optical properties of ZrO2 from ab initio calculations. J. Appl. Phys. 2006, 100, 104103. [Google Scholar] [CrossRef]
- Chik, A.; Adewale, A.A.; Pa, F.C. Influence of calcium and zirconium as codopant on electronic and optical properties of BaTiO3 using first principle calculation. AIP Conf. Proc. 2021, 2339, 020217. [Google Scholar]
- Alshoaibi, A.; Kanoun, M.B.; Ul Haq, B.; AlFaify, S.; Goumri-Said, S. Insights into the Impact of Yttrium Doping at the Ba and Ti Sites of BaTiO3 on the Electronic Structures and Optical Properties: A First-Principles Study. ACS Omega 2020, 5, 15502–15509. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fan, H.Q. Theoretical studies on electronic structure and optical properties of Bi2WO6. Optik 2018, 158, 962–969. [Google Scholar] [CrossRef]
- Hafid, L.; Godefroy, G.; El Idrissi, A.; Michel-Calendini, F. Absorption spectrum in the near UV and electronic structure of pure barium titanate. Solid State Commun. 1988, 66, 841–845. [Google Scholar] [CrossRef]
- Chernova, E.; Pacherova, O.; Chvostova, D.; Dejneka, A.; Kocourek, T.; Jelinek, M.; Tyunina, M. Strain–controlled optical absorption in epitaxial ferroelectric BaTiO3 films. Appl. Phys. Lett. 2015, 106, 192903. [Google Scholar] [CrossRef]
- Arbab, A.I. On the refractive index and photon mass. Optik 2016, 127, 6682–6687. [Google Scholar] [CrossRef]
Compound | Method | a (Å) | c (Å) | V (Å3) | Ba-O(Å) | Ti-O (Å) | Ce-O (Å) |
---|---|---|---|---|---|---|---|
BaTiO3 | GGA-PBE | 4.023 | 4.161 | 67.344 | 2.823 | 2.017 | |
4.007 [32] | 4.186 [32] | 67.211 [32] | |||||
3.967 [33] | 4.232 [33] | 66.599 [33] | |||||
Experiment | 4.000 [34] | 4.024 [34] | 64.384 [34] | ||||
Ba0.875Ce0.125TiO3 | GGA-PBE | 4.033 | 4.063 | 66.085 | 2.856 | 2.024 | 2.619 |
BaTi0.875Ce0.125O3 | 4.079 | 4.240 | 70.546 | 2.854 | 2.078 | 2.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, H.; Fang, K.; Chen, T.; Jing, Q.; Guo, K.; Liu, Z.; Xie, B.; Mao, P.; Lu, J.; Tay, F.E.H.; et al. First-Principle Study on Correlate Structural, Electronic and Optical Properties of Ce-Doped BaTiO3. Crystals 2023, 13, 255. https://doi.org/10.3390/cryst13020255
Yue H, Fang K, Chen T, Jing Q, Guo K, Liu Z, Xie B, Mao P, Lu J, Tay FEH, et al. First-Principle Study on Correlate Structural, Electronic and Optical Properties of Ce-Doped BaTiO3. Crystals. 2023; 13(2):255. https://doi.org/10.3390/cryst13020255
Chicago/Turabian StyleYue, Haojie, Kailing Fang, Tiantian Chen, Qinfang Jing, Kun Guo, Zhiyong Liu, Bing Xie, Pu Mao, Jinshan Lu, Francis Eng Hock Tay, and et al. 2023. "First-Principle Study on Correlate Structural, Electronic and Optical Properties of Ce-Doped BaTiO3" Crystals 13, no. 2: 255. https://doi.org/10.3390/cryst13020255
APA StyleYue, H., Fang, K., Chen, T., Jing, Q., Guo, K., Liu, Z., Xie, B., Mao, P., Lu, J., Tay, F. E. H., Tan, I., & Yao, K. (2023). First-Principle Study on Correlate Structural, Electronic and Optical Properties of Ce-Doped BaTiO3. Crystals, 13(2), 255. https://doi.org/10.3390/cryst13020255