Characterizations on Precipitations in the Cu-Rich Corner of Cu-Ni-Al Ternary Phase Diagram
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Microstructure and Phase Composition of As-Cast Alloys
3.2. Microstructure and Phase Composition of Heat-Treated Alloys
3.3. Thermodynamic Analysis on the Formation of Ni-Al Intermetallics
3.3.1. Solidification Process
3.3.2. Solid-State Process
4. Conclusions
- Although the chemical composition is located in the single-phase area of the Cu-Ni-Al phase diagram, NiAl intermetallic phase can be formed at the grain boundary and the internal part of the Cu matrix, respectively. The higher the Ni and Al content is, the bigger the amount and size of the intermetallic compound.
- Nano-sized Ni3Al particles can precipitate from the solutioned Cu-Ni-Al alloys, indicating that the strength and electrical conductivity of Cu-Ni-Al alloys can be regulated by heat treatments, which is similar to other high-strength and high-conductivity Cu alloys.
- NiAl phase is first to form in the solidification process since it has the minimum change in free Gibbs energy in all the potential competitive reactions of Ni-Al intermetallics, while Ni3Al is more likely to precipitate from the supersaturated Cu (Ni, Al) matrix during the aging process because of the relative lower formation enthalpy and lower Al concentration required.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chao, S.C.; Huang, W.C.; Liu, J.H.; Song, J.M.; Shen, P.Y.; Huang, C.L.; Hung, L.T.; Chang, C.H. Oxidation Characteristics of Commercial Copper-Based Lead Frame Surface and the Bonding with Epoxy Molding Compounds. Microelectron. Reliab. 2019, 99, 161–167. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, J.; Chen, J.; Xu, H.; Li, Z.; Zhang, J. Aging Behavior and Precipitation Analysis of Cu-Ni-Co-Si Alloy. Crystals 2018, 8, 435. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, Z.; Li, Z.; Qiu, W.; Jiang, H.; Lei, Q.; Liu, Z.; Jiang, Y.; Zhang, S. Microstructure and Properties of a Cu–Ni–Si–Co–Cr Alloy with High Strength and High Conductivity. Mater. Sci. Eng. A 2019, 759, 396–403. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, R.; Xiao, Z.; Gong, S.; Jiang, Y.; Li, Z. Microstructure and Properties of Cu-10 Wt% Fe Alloy Produced by Double Melt Mixed Casting and Multi-Stage Thermomechanical Treatment. J. Alloys Compd. 2020, 820, 153323. [Google Scholar] [CrossRef]
- Suzuki, S.; Shibutani, N.; Mimura, K.; Isshiki, M.; Waseda, Y. Improvement in Strength and Electrical Conductivity of Cu-Ni-Si Alloys by Aging and Cold Rolling. J. Alloys Compd. 2006, 417, 116–120. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, S.; Zhou, Q.; Chen, Z.; Xue, L.; Li, H.; Yan, Y. Improving High Temperature Properties of Cu-Cr-Y Alloy by Residual Cr Particles and Nano-Y2O3 Dispersions. J. Mater. Res. Technol. 2022, 21, 2976–2988. [Google Scholar] [CrossRef]
- Chalon, J.; Guérin, J.D.; Dubar, L.; Dubois, A.; Puchi-Cabrera, E.S. Characterization of the Hot-Working Behavior of a Cu-Ni-Si Alloy. Mater. Sci. Eng. A 2016, 667, 77–86. [Google Scholar] [CrossRef]
- Ma, M.; Li, Z.; Xiao, Z.; Jia, Y.; Meng, X.; Jiang, Y.; Hu, Y. Microstructure and Properties of Cu–Ni–Co–Si–Cr–Mg Alloys with Different Si Contents after Multi-Step Thermo-Mechanical Treatment. Mater. Sci. Eng. A 2022, 850, 143532. [Google Scholar] [CrossRef]
- Liao, W.N.; Zhang, C.; Qiang, H.; Song, W.; Hu, Y. The Comprehensive Performance and Strengthening Mechanism of the Columnar Crystal Cu-Ni-Si Alloy after Two Large Deformation Rates of Cryogenic Rolling-Aging. SSRN Electron. J. 2023, 936, 168281. [Google Scholar] [CrossRef]
- Monzen, R.; Watanabe, C. Microstructure and Mechanical Properties of Cu-Ni-Si Alloys. Mater. Sci. Eng. A 2008, 483–484, 117–119. [Google Scholar] [CrossRef]
- Lei, Q.; Li, Z.; Wang, M.P.; Zhang, L.; Xiao, Z.; Jia, Y.L. The Evolution of Microstructure in Cu-8.0Ni-1.8Si-0.15Mg Alloy during Aging. Mater. Sci. Eng. A 2010, 527, 6728–6733. [Google Scholar] [CrossRef]
- Xie, H.; Jia, L.; Lu, Z. Microstructure and Solidification Behavior of Cu-Ni-Si Alloys. Mater. Charact. 2009, 60, 114–118. [Google Scholar] [CrossRef]
- Ghosh, G.; Miyake, J.; Fine, M.E. The systems-based design of high-strength, high-conductivity alloys. JOM 1997, 49, 56–60. [Google Scholar] [CrossRef]
- Gale, W.F.; Totemeier, T.C. Smithells Metals Reference Book, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2004; pp. 1703–1823. [Google Scholar]
- Liang, Y.J.; Che, Y.C. Handbook of Thermodynamic Data of Minerals; Northeastern University Press: Shenyang, China, 1993. (In Chinese) [Google Scholar]
- Baker, H. ASM Handbook, Vol. 3, Alloy Phase Diagrams; ASM International: Novelty, OH, USA, 1992; pp. 569–605. [Google Scholar]
- Jia, L.; Lin, X.; Xie, H.; Lu, Z.L.; Wang, X. Abnormal improvement on electrical conductivity of Cu–Ni–Si alloys resulting fromsemi-solid isothermal treatment. Mater. Lett. 2012, 77, 107–109. [Google Scholar] [CrossRef]
- Li, S.L.; Hu, P.; Liu, T.; Shi, Q.S.; Dang, X.M.; Hu, B.L.; Zhang, W.; Wang, K.S. Formation mechanism of coronal composite secondary phase in titanium-zirconium-molybdenum alloy. Mater. Charact. 2022, 193, 112235. [Google Scholar] [CrossRef]
- Jia, L.; Xie, H.; Lu, Z.L.; Wang, X.; Lin, X. Experimental investigation on phase transformation of Cu-Ni-Si alloy melts during cooling. Mater. Sci. Technol. 2013, 29, 998–999. [Google Scholar] [CrossRef]
- Miedema, A.R.; de Châtel, P.F.; de Boer, F.R. Cohesion in Alloys—Fundamentals of a Semi-Empirical Model. Phys. B+C 1980, 100, 1–28. [Google Scholar] [CrossRef]
- Lei, Q.; Li, S.; Zhu, J.; Xiao, Z.; Zhang, F.; Li, Z. Microstructural Evolution, Phase Transition, and Physics Properties of a High Strength Cu–Ni–Si–Al Alloy. Mater. Charact. 2019, 147, 315–323. [Google Scholar] [CrossRef]
- Haapalehto, M.; Pinomaa, T.; Wang, L.; Laukkanen, A. An atomistic simulation study of rapid solidification kinetics and crystaldefects in dilute Al–Cu alloys. Comput. Mater. Sci. 2022, 209, 111356. [Google Scholar] [CrossRef]
Number | Nominal Composition | Content (wt.%) | ||
---|---|---|---|---|
Cu | Ni | Al | ||
a | Cu-5.4Ni-3.6Al | 91 | 5.4 | 3.6 |
b | Cu-4.2Ni-2.8Al | 93 | 4.2 | 2.8 |
c | Cu-3.0Ni-2.0Al | 95 | 3.0 | 2.0 |
Points | Chemical Composition (at. %) | Atoic Ratio of Ni/Al | ||
---|---|---|---|---|
Cu | Ni | Al | ||
1 | 84.90 | 7.28 | 7.82 | 0.931 |
2 | 84.78 | 7.35 | 7.87 | 0.934 |
3 | 84.17 | 7.15 | 8.69 | 0.823 |
Compounds | Cp,I (J/mol·K) | ||||
---|---|---|---|---|---|
a | b | c | |||
Ni3Al | −153.13 | 113.80 | 88.492 | 32.217 | / |
NiAl | −118.41 | 54.10 | 41.840 | 13.807 | / |
Ni2Al3 | −282.42 | 136.40 | 106.064 | 34.309 | / |
NiAl3 | −150.62 | 110.67 | 84.098 | 35.146 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zheng, C.; Chen, J.; Chen, A.; Jia, L.; Xie, H.; Lu, Z. Characterizations on Precipitations in the Cu-Rich Corner of Cu-Ni-Al Ternary Phase Diagram. Crystals 2023, 13, 274. https://doi.org/10.3390/cryst13020274
Zhou Y, Zheng C, Chen J, Chen A, Jia L, Xie H, Lu Z. Characterizations on Precipitations in the Cu-Rich Corner of Cu-Ni-Al Ternary Phase Diagram. Crystals. 2023; 13(2):274. https://doi.org/10.3390/cryst13020274
Chicago/Turabian StyleZhou, Yongxin, Chenyang Zheng, Jiankun Chen, Amin Chen, Lei Jia, Hui Xie, and Zhenlin Lu. 2023. "Characterizations on Precipitations in the Cu-Rich Corner of Cu-Ni-Al Ternary Phase Diagram" Crystals 13, no. 2: 274. https://doi.org/10.3390/cryst13020274
APA StyleZhou, Y., Zheng, C., Chen, J., Chen, A., Jia, L., Xie, H., & Lu, Z. (2023). Characterizations on Precipitations in the Cu-Rich Corner of Cu-Ni-Al Ternary Phase Diagram. Crystals, 13(2), 274. https://doi.org/10.3390/cryst13020274