Determining Localized Necking in Polycrystalline Sheet Metals Using the Bifurcation Phenomenon in Strain Evolution
Abstract
:1. Introduction
2. Technical Details and Methods
2.1. Material Characterization and Properties
2.2. The Forming Limit Tests
2.3. Theoretical Models and Necking Interpretation
2.3.1. The Imperfection Method
2.3.2. The Non-Defect Method
2.4. Necking Evolution and Detection
3. Results and Discussion
3.1. The Bifurcation in Uniaxial Tension Test
3.2. Localized Necking in Low-Carbon Steel
3.3. Localized Necking in DP Steel Sheets
3.4. Forming Limit Diagram
4. Conclusions
- The proposed localized necking deterministic approach can reliably capture the forming limits, and the obtained strain limit is similar to the results determined by the strain rate method. This method is based on the bifurcation phenomenon (or the strain plateau) of sheet metals without the derivative calculation of strain evolution, which implies a localized deformation in a narrow band, while the deformation remains homogeneous elsewhere to form the strain plateau during localized necking.
- The proposed method shows a good agreement on the left-hand side when compared to a theoretical prediction. For low-carbon steel sheets, the new method shows satisfactory agreement between the imperfection prediction, Keeler’s equation, and the experiments. For high-strength steel sheets, more tests are still necessary to achieve a full comparison.
- The failure mode of the high-strength steel sheets tested in this study under balanced biaxial tension shows a very complex mechanism. Based on the thickness measurement, as well as crack edge observation, it is suggested that a direct fracture occurred before localized necking.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, R. On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets. J. Mech. Phys. Solids 1952, 1, 19–30. [Google Scholar] [CrossRef]
- Keeler, S. Determination of Forming Limits in Automotive Stampings; SAE Technical Paper, No. 650535; SAE International: Warrendale, PA, USA, 1965. [Google Scholar] [CrossRef]
- Goodwin, G.M. Application of Strain Analysis on Sheet Metal Forming Problems in the Press Shop; SAE Technical Paper; No. 680093; SAE International: Warrendale, PA, USA, 1968. [Google Scholar]
- He, J.; Han, G.F.; Feng, Y.S. Phase transformation and plastic behavior of QP steel sheets: Transformation kinetics-informed modeling and forming limit prediction. Thin Walled Struc. 2022, 173, 108977. [Google Scholar] [CrossRef]
- Han, G.F.; He, J.; Li, S.H. Simple shear deformation of sheet metals: Finite strain perturbation analysis and high-resolution quasi-in-situ strain measurement. Int. J. Plasticity 2022, 150, 103194. [Google Scholar] [CrossRef]
- He, J.; Han, G.F.; Li, S.H.; Zou, D.Q. To correlate the phase transformation and mechanical behavior of QP steel sheets. Int. J. Mech. Sci. 2019, 152, 198–210. [Google Scholar] [CrossRef]
- He, J.; Xia, Z.C.; Zhu, X.H.; Zeng, D.; Li, S.H. Sheet Metal Forming Limits under Stretch-Bending with Anisotropic Hardening. Int. J. Mech. Sci. 2013, 75, 244–256. [Google Scholar] [CrossRef]
- He, J.; Zeng, D.; Zhu, X.H.; Xia, Z.C.; Li, S.H. Effect of Nonlinear Strain Paths on Forming Limits under Isotropic and Anisotropic Hardening. Int. J. Solids Struct. 2014, 51, 402–415. [Google Scholar] [CrossRef]
- ISO-FDIS 12004-2-2008; Metallic Materials-Sheet and Strip-Determination of Forming Limit Curves. International Organization for Standardization: Geneva, Switzerland, 2008.
- Marciniak, Z.; Kuczynski, K. Limit Strains in the Processes of Stretch-Forming Sheet Metal. Int. J. Mech. Sci. 1967, 9, 609–612. [Google Scholar] [CrossRef]
- Huang, G.; Sriram, S.; Yan, B. Digital image correlation technique and its application in forming limit curve determination. In Proceedings of the IDDRG 2008 International Conference, Olofstrom, Sweden, 16 June 2018; pp. 153–162. [Google Scholar]
- Merklein, M.; Kuppert, A.; Geiger, M. Time dependent determination of forming limit diagrams. CIRP Ann. Manuf. Technol. 2010, 59, 295–298. [Google Scholar] [CrossRef]
- Hotz, W.; Merklein, M.; Kuppert, A.; Friebe, H.; Klein, M. Time dependent FLC determination-Comparison of different algorithms to detect the onset of unstable necking before fracture. Key Eng. Mater. 2013, 549, 397–404. [Google Scholar] [CrossRef]
- Martínez-Donaire, A.J.; García-Lomas, F.J.; Vallellano, C. New approaches to detect the onset of localized necking in sheets under through-thickness strain gradients. Mater. Des. 2014, 57, 135–145. [Google Scholar] [CrossRef]
- Min, J.; Stoughton, T.B.; Carsley, J.E.; Lin, J. Comparison of DIC methods of determining forming limit strains. Procedia Manuf. 2017, 7, 668–674. [Google Scholar] [CrossRef]
- Wang, K.; Carsley, J.E.; He, B.; Li, J.; Zhang, L. Measuring forming limit strains with digital image correlation analysis. J. Mat. Process Tech. 2014, 214, 1120–1130. [Google Scholar] [CrossRef]
- Di Cecco, S.; Butcher, C.; Worswick, M.; Chu, E.; Boettcher, E.; Shi, C. Determination of forming limit diagrams of AA6013-T6 aluminum alloy sheet using a time and position dependent localized necking criterion. IOP Conf. Ser. Mater. Sci. Eng. 2016, 159, 012009. [Google Scholar] [CrossRef]
- Min, J.; Stoughton, T.B.; Carsley, J.E.; Lin, J. A method of detecting the onset of localized necking based on surface geometry measurement. Exp. Mech. 2016, 57, 521–535. [Google Scholar] [CrossRef]
- Gu, B.; He, J.; Li, S.H.; Lin, Z.Q. Anisotropic fracture modeling of sheet metals: From in-plane to out-of-plane. Int. J. Solids Struct. 2019, 182–183, 112–140. [Google Scholar] [CrossRef]
- Guo, C.; He, J.; Su, Y.H.; Li, S.H. Thermo-stamping co-curing process for CFRP/steel hybrid sheets and its interface strength improvement. Compos. Struct. 2020, 241, 112108. [Google Scholar] [CrossRef]
- Guo, C.; He, J. Multi-scale concurrent analysis for bio-inspired helicoidal CFRP laminates and experimental investigation. Compos. Struct. 2022, 296, 115886. [Google Scholar] [CrossRef]
- He, J.; Li, Y.F.; Gu, B.; Li, S. Effects of reverse loading on forming limit predictions with distortional anisotropic hardening under associated and non-associated flow rules. Int. J. Mech. Sci. 2019, 156, 446–461. [Google Scholar] [CrossRef]
- He, J.; Han, G.; Guo, C. Non-associated anisotropic plasticity of metal sheets based on the distortional concept. Thin Walled Struc. 2021, 161, 107523. [Google Scholar] [CrossRef]
- Stören, S.; Rice, J. Localized Necking in Thin Sheets. J. Mech. Phys. Solids 1975, 23, 421–441. [Google Scholar] [CrossRef]
- Zhu, X.H.; Weinmann, K.; Chandra, A. A Unified Bifurcation Analysis of Sheet Metal Forming Limits. ASME J. Eng. Mater. Technol. 2001, 123, 329–333. [Google Scholar] [CrossRef]
- Li, S.; He, J.; Cedric Xia, Z.; Zeng, D.; Hou, B. Bifurcation Analysis of Forming Limits for an Orthotropic Sheet Metal. ASME J. Manuf. Sci. Eng. 2014, 136, 051005. [Google Scholar] [CrossRef]
- Petit, J.; Montay, G.; François, M. Strain rate measurements by speckle interferometry for necking investigation in stainless steel. Int. J. Solids Struct. 2014, 51, 540–550. [Google Scholar] [CrossRef]
Direction | r-Value | K (MPa) | n-Value | Yield Stress (MPa) |
---|---|---|---|---|
0 | 2.26 | 547.17 | 0.286 | 154 |
45 | 2.52 | 560.90 | 0.286 | 150 |
90 | 2.21 | 557.96 | 0.295 | 141 |
Direction | r-Value | K (MPa) | n-Value | Yield Stress (MPa) |
---|---|---|---|---|
0 | 0.899 | 1120 | 0.212 | 341 |
45 | 0.946 | 1125 | 0.21 | 340 |
90 | 1.066 | 1128 | 0.209 | 331 |
Specimen | Section a | Section b | Section c | |||
---|---|---|---|---|---|---|
Limit Strain | Necking Time | Limit Strain | Necking Time | Limit Strain | Necking Time | |
1 | 0.39 | 108.6 s | 0.41 | 109 s | 0.38 | 109.4 s |
2 | 0.345 | 107.3 s | 0.349 | 106 s | 0.349 | 107.8 s |
3 | 0.368 | 107.5 s | 0.382 | 108.4 s | 0.368 | 108.5 s |
Specimen Width (Unit: mm) | Test | Major Strain | Minor Strain |
---|---|---|---|
25 | 1 | 0.445 | −0.176 |
2 | 0.416 | −0.165 | |
3 | 0.413 | −0.167 | |
50 | 1 | 0.426 | −0.124 |
2 | 0.433 | −0.133 | |
3 | 0.439 | −0.132 | |
70 | 1 | 0.382 | −0.067 |
2 | 0.327 | −0.051 | |
3 | 0.341 | −0.054 | |
90 | 1 | 0.304 | −0.013 |
2 | 0.282 | −0.010 | |
3 | 0.277 | −0.010 | |
110 | 1 | 0.250 | 0.016 |
2 | 0.252 | 0.016 | |
3 | 0.251 | 0.016 | |
135 | 1 | 0.206 | 0.050 |
2 | 0.213 | 0.074 | |
3 | 0.245 | 0.062 | |
180 (strain rate method) | 1 | 0.348 | 0.328 |
2 | 0.386 | 0.350 | |
3 | 0.333 | 0.328 |
Specimen Width (Unit: mm) | Test | Major Strain | Minor Strain |
---|---|---|---|
30 | 1 | 0.448 | −0.064 |
2 | 0.476 | −0.051 | |
3 | 0.468 | −0.054 | |
40 | 1 | 0.391 | 0.017 |
2 | 0.35 | 0.029 | |
3 | 0.382 | 0.018 | |
50 | 1 | 0.375 | 0.081 |
2 | 0.377 | 0.087 | |
3 | 0.424 | 0.081 | |
70 | 1 | 0.478 | 0.186 |
2 | 0.398 | 0.189 | |
3 | 0.427 | 0.187 |
Material | Fy | Gy | Hy | Ny | Fp | Gp | Hp | Np |
---|---|---|---|---|---|---|---|---|
Low-carbon steel | 0.64 | 0.45 | 0.55 | 1.56 | 0.31 | 0.31 | 0.69 | 1.87 |
Material | Fy | Gy | Hy | Ny | Fp | Gp | Hp | Np |
---|---|---|---|---|---|---|---|---|
High-strength steel | 0.55 | 0.48 | 0.52 | 1.5 | 0.44 | 0.53 | 0.47 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Feng, Y. Determining Localized Necking in Polycrystalline Sheet Metals Using the Bifurcation Phenomenon in Strain Evolution. Crystals 2023, 13, 272. https://doi.org/10.3390/cryst13020272
He J, Feng Y. Determining Localized Necking in Polycrystalline Sheet Metals Using the Bifurcation Phenomenon in Strain Evolution. Crystals. 2023; 13(2):272. https://doi.org/10.3390/cryst13020272
Chicago/Turabian StyleHe, Ji, and Yishuang Feng. 2023. "Determining Localized Necking in Polycrystalline Sheet Metals Using the Bifurcation Phenomenon in Strain Evolution" Crystals 13, no. 2: 272. https://doi.org/10.3390/cryst13020272
APA StyleHe, J., & Feng, Y. (2023). Determining Localized Necking in Polycrystalline Sheet Metals Using the Bifurcation Phenomenon in Strain Evolution. Crystals, 13(2), 272. https://doi.org/10.3390/cryst13020272