Creep Behavior of Squeeze-Cast Mg–15Gd Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Alloy
2.2. Microscopic Observations
2.3. Creep Tests
2.4. Creep Data Analysis
3. Results
4. Discussion
4.1. Single Phase Region
4.2. Two Phase Region
4.3. Comparison with Cast Pure Magnesium and Squeeze-Cast Magnesium Alloys
5. Conclusions
- In the higher temperature range, the activation energy of the creep was 164 kJ/mol, and the stress exponent was n = 3.17. The behavior was interpreted in terms of the viscous glide, where the dislocation motion was constrained by the presence of the solute atmospheres. The dislocation motion was controlled by the rate of cross-slip from the basal to the prismatic planes.
- The fact that the activation energy was higher than the activation enthalpy of diffusion must be considered when predicting heat resistance, which is usually based on experiments at higher temperatures due to time constraints.
- At temperatures of 623 K and 673K, the creep behavior was rationalized by introducing the threshold stress concept. The value of the stress exponent found in the single-phase region was used to determine the threshold stress in the two-phase region. To the best of the authors’ knowledge, this procedure has not been used in the creep analysis of magnesium alloys. The dislocation velocity was still limited by the solute atoms, but the cross slip to the prismatic planes no longer played a significant role due to the reduced temperature.
- At temperatures of 523 K and 573 K, the stresses required to achieve experimentally measurable creep rates were so large that the dislocations broke away from the atmospheres of the foreign atoms.
- At temperatures lower than those studied in this work, it would be interesting to study the critical stress for the dislocation detachment from the solute atmospheres in a material that has undergone hardening annealing. This study may lead to the optimization of the heat treatment.
- Comparison with a series of magnesium alloys prepared by squeeze casting and tested by the same technique showed that gadolinium can be a favorable creep-resistance enhancing element.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Dong, J.; Lin, T.; Shao, H.; Wang, H.; Wang, X.; Song, K.; Li, Q. Advances in degradation behavior of biomedical magnesium alloys: A review. J. Alloys Compd. 2022, 908, 164600. [Google Scholar] [CrossRef]
- Pekguleryuz, M.; Celikin, M. Creep resistance in magnesium alloys. Inter. Mater. Rev. 2010, 55, 197–217. [Google Scholar] [CrossRef]
- Mo, N.; Tan, Q.; Bermingham, M.; Huang, Y.; Dieringa, H.; Hort, N.; Zhang, M.-X. Current development of creep-resistant magnesium cast alloys: A review. Mater. Des. 2018, 155, 422–442. [Google Scholar] [CrossRef]
- Chia, T.L.; Easton, M.A.; Zhu, S.M.; Gibson, M.A.; Birbilis, N.; Nie, J.F. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics 2009, 17, 481–490. [Google Scholar] [CrossRef]
- Yan, J.; Sun, Y.; Xue, F.; Xue, S.; Tao, W. Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Mater. Sci. Eng. 2008, A476, 366–371. [Google Scholar] [CrossRef]
- Wu, B.L.; Wan, G.; Du, X.H.; Zhang, Y.D.; Wagner, F.; Esling, C. The quasi-static mechanical properties of extruded binary Mg–Er alloys. Mater. Sci. Eng. 2013, A573, 205–214. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Y.; Peng, Q.; Feyerabend, F.; Kainer, K.U.; Willumeit, R.; Hort, N. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Mater. Sci. Eng. 2011, B176, 1827–1834. [Google Scholar] [CrossRef]
- Wu, H.; Yan, T.; Wang, L.; Li, X.; Wei, Y.; Li, S.; Wang, X.; Wu, R. Effect of Yb addition on the microstructure and mechanical properties of ZK60 alloy during extrusion. Mater. Sci. Eng. 2020, A777, 139033. [Google Scholar] [CrossRef]
- Mordike, B.L.; Stulíková, I.; Smola, B. Mechanisms of creep deformation in Mg-Sc–based alloys. Metal. Mater. Trans. 2005, A36, 1729–1736. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Leng, Z.; Liu, X.; Niu, Z.; Zhang, M.; Wu, R. Structure stability and mechanical properties of high-pressure die-cast Mg–Al–La–Y-based alloy. Mater. Sci. Eng. 2012, A531, 70–75. [Google Scholar] [CrossRef]
- Yang, Q.; Yan, Z.; Lv, S.; Guan, K.; Qiu, X. Abnormal creep stress exponents in a high-pressure die casting Mg–Al−RE alloy. Mater. Sci. Eng. 2022, A831, 142203. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Liu, J.; Sun, J.; Chen, Q.; Lu, L.; Zhao, Y. Study on Microstructure and Mechanical Property in Mg-Gd-Y Alloy by Secondary Extrusion Process. Crystals 2021, 11, 939. [Google Scholar] [CrossRef]
- Gao, L.; Chen, R.S.; Han, E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 2009, 481, 379–384. [Google Scholar] [CrossRef]
- Li, R.G.; Li, H.R.; Pan, H.C.; Xie, D.S.; Zhang, J.H.; Fang, D.Q.; Dai, Y.D.; Zhao, D.Y.; Zhang, H. Achieving exceptionally high strength in binary Mg-13Gd alloy by strong texture and substantial precipitates. Scripta Mater. 2021, 193, 142–146. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Ma, A.B.; Xu, B.Q.; Jiang, J.H.; Sun, J.P. Development of a high-strength Mg–11Gd–2Ag (wt%) alloy sheet with extra-low anisotropy. Mater. Sci. Eng. 2021, A811, 141084. [Google Scholar] [CrossRef]
- Yao, H.; Li, H.; Liu, Y.; Shi, H. Enhanced mechanical and corrosion properties of grain refined Mg-2.0Zn-0.5Zr-3.0Gd alloy. Kovové Mater. 2020, 58, 409–421. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, J.; Tan, S.; Zhang, X. Effects of Gd and heat treatments on mechanical properties of Mg-xGd-1Zn-0.4Zr alloys. Kovové Mater. 2020, 58, 423–432. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Miao, H.; Sun, J.; Ong, M.T.Y.; Zu, H.; Li, W. The Bioactive Mg-Zn-Gd Wire Enhances Musculoskeletal Regeneration: An In Vitro Study. Crystals 2022, 12, 1287. [Google Scholar] [CrossRef]
- Anyanwu, I.A.; Kamado, S.; Kojima, Y. Creep Properties of Mg-Gd-Y-Zr Alloys. Mater. Trans. 2001, 42, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, J.; Xu, Y.; Wang, R.; Nie, J.; Zhu, L. Microstructure and creep behaviour of Mg-12Gd-3Y-1Zn-0.4Zr alloy. J. Rare Earths 2013, 31, 186–191. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.D.; Boehlert, C.J.; Yang, J.; Yin, D.D.; Yuan, J.; Ding, W.J. The impression creep behavior and microstructure evolution of cast and cast-then-extruded Mg–10Gd–3Y–0.5Zr (wt%). Mater. Sci. Eng. 2016, A649, 313–324. [Google Scholar] [CrossRef]
- Mo, N.; McCarroll, I.; Tan, Q.; Ceguerra, A.; Liu, Y.; Cairney, J.; Dieringa, H.; Huang, Y.; Jiang, B.; Pan, F.; et al. Understanding solid solution strengthening at elevated temperatures in a creep-resistant Mg–Gd–Ca alloy. Acta Mater. 2019, 181, 185–199. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, B.; Wu, G.; Zhang, L.; Peng, X.; Cao, L. High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy. J. Magnes. Alloys 2019, 7, 597–604. [Google Scholar] [CrossRef]
- Garces, G.; Máthis, K.; Barea, R.; Medina, J.; Pérez, P.; Stark, A.; Schell, N.; Adeva, P. Effect of precipitation in the compressive behavior of high strength Mg-Gd-Y-Zn extruded alloy. Mater. Sci. Eng. 2019, A768, 138452. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Shi, G.; Li, Y.; Li, X.; Ma, M.; Yuan, J.; Wang, K. Abnormal creep behavior of Mg–12Gd–1MM–0.6Zr (wt.%) alloy at 300 °C. Mater. Lett. 2021, 295, 129861. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Shi, G.; Wang, K.; Li, Y.; Li, X.; Ma, M.; Yuan, J. Microstructure evolution, mechanical properties and creep mechanisms of Mg-12Gd-1MM-0.6Zr (wt%) magnesium alloy. J. Rare Earths 2021, 39, 600–608. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Pang, S.; Meng, T.; Zhi, Y.; Xu, Y.; Xiao, L.; Li, R. Investigation of tensile creep behavior of Mg–Gd–Y–Zr alloy based on creep constitutive model. Mater. Sci. Eng. 2021, A805, 140567. [Google Scholar] [CrossRef]
- Stulíková, I.; Smola, B.; von Buch, F.; Mordike, B.L. Development of Creep Resistant Mg-Gd-Sc Alloys with Low Sc Content. Mater. Werkst. 2001, 32, 20–24. [Google Scholar] [CrossRef]
- Smola, B.; Stulíková, I.; von Buch, F.; Mordike, B.L. Structural aspects of high performance Mg alloys design. Mater. Sci. Eng. 2002, A324, 113–117. [Google Scholar] [CrossRef]
- Smola, B.; Stulíková, I.; Pelcová, J.; Mordike, B.L. Significance of stable and metastable phases in high temperature creep resistant magnesium–rare earth base alloys. J. Alloys Compd. 2004, 378, 196–201. [Google Scholar] [CrossRef]
- Stanford, N.; Sabirov, I.; Sha, G.; La Fontaine, A.; Ringer, S.P.; Barnett, M.R. Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metall. Mater. Trans. 2010, A41, 734–743. [Google Scholar] [CrossRef]
- Wang, J.; Luo, L.; Huo, Q.; Shi, Y.; Xiao, Z.; Ye, Y.; Yang, X. Creep behaviors of a highly concentrated Mg-18 wt%Gd binary alloy with and without artificial aging. J. Alloys Compd. 2019, 774, 1036–1045. [Google Scholar] [CrossRef]
- Ouyang, S.; Yang, G.; Qin, H.; Luo, S.; Xiao, L.; Jie, W. High temperature creep behavior and creep microstructure evolution of T6 state Mg–15Gd alloy. Mater. Sci. Eng. 2020, A780, 139138. [Google Scholar] [CrossRef]
- Chen, C.; Huo, Q.; Zhang, Z.; Zhang, Y.; Tang, J.; Li, K.; Ma, J.; Yang, X. Effects of precipitate origin and precipitate-free zone development on the tensile creep behaviors of a hot-rolled Mg-13wt%Gd binary alloy. Mater. Char. 2021, 178, 111303. [Google Scholar] [CrossRef]
- Ouyang, S.; Yang, G.; Qin, H.; Wang, C.; Luo, S.; Jie, W. Effect of the precipitation state on high temperature tensile and creep behaviors of Mg-15Gd alloy. J. Magnes. Alloys 2022, 10, 3459–3469. [Google Scholar] [CrossRef]
- Vostrý, P.; Smola, B.; Stulíková, I.; von Buch, F.; Mordike, B.L. Microstructure Evolution in Isochronally Heat Treated Mg-Gd Alloys. Phys. Stat. Sol. (a) 1999, 175, 491–500. [Google Scholar] [CrossRef]
- Dobeš, F.; Zvěřina, O.; Čadek, J. Modified lever system for constant-stress compressive creep machine. J. Test. Eval. 1986, 14, 271–273. [Google Scholar]
- Dobeš, F.; Dymáček, P.; Friák, M. Creep of Heusler-Type Alloy Fe-25Al-25Co. Crystals 2020, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Hampl, M.; Blawert, C.; Silva Campos, M.R.; Hort, N.; Peng, Q.; Kainer, K.U.; Schmid-Fetzer, R. Thermodynamic assessment and experimental study of Mg-Gd alloys. J. Alloys Compd. 2013, 581, 166–177. [Google Scholar] [CrossRef]
- Perez-Prado, M.-T.; Kassner, M.E. The 3-Power-Law Viscous Glide Creep. In Fundamentals of Creep in Metals and Alloys, 3rd ed.; Kassner, M.E., Ed.; Butterworth-Heinemann/Elsevier: Oxford, UK, 2015; pp. 129–138. [Google Scholar] [CrossRef]
- Darken, L.S. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. AIME 1948, 175, 184–201. [Google Scholar]
- Fuentes-Samaniego, R.; Nix, W.D.; Pound, G.M. Vacancy and substitutional solute distribution around an edge dislocation in equilibrium and in steady-state glide motion. Philos. Mag. 1980, A42, 591–600. [Google Scholar] [CrossRef]
- Fuentes-Samaniego, R.; Nix, W.D. Appropriate diffusion coefficients for describing creep processes in solid solution alloys. Scripta Metal. 1981, 15, 15–20. [Google Scholar] [CrossRef]
- Zhong, W.; Zhao, J.-C. Measurements of diffusion coefficients of Ce, Gd and Mn in Mg. Materialia 2019, 7, 100353. [Google Scholar] [CrossRef]
- Shewmon, P.G.; Rhines, F.N. Rate of self-diffusion in polycrystalline magnesium. Trans. AIME J. Met. 1954, 6, 1021–1025. [Google Scholar] [CrossRef]
- Frost, H.J.; Ashby, M.F. Deformation-Mechanism Maps—The Plasticity and Creep of Metals and Ceramics; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Vagarali, S.S.; Langdon, T.G. Deformation Mechanisms in H.C.P. Metals at Elevated Temperatures-I. Creep Behavior of Magnesium. Acta Metal. 1981, 29, 1969–1982. [Google Scholar] [CrossRef]
- Vagarali, S.S.; Langdon, T.G. Deformation Mechanisms in H.C.P. Metals at Elevated Temperatures-II. Creep Behavior of a Mg-0.8% Al Solid Solution Alloy. Acta Metal. 1982, 30, 1157–1170. [Google Scholar] [CrossRef]
- Li, Y.; Langdon, T.G. A Unified Interpretation of Threshold Stresses in the Creep and High Strain Rate Superplasticity of Metal Matrix Composites. Acta Mater. 1999, 47, 3395–3403. [Google Scholar] [CrossRef]
- Friedel, J. Dislocations; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Milička, K.; Trojanová, Z.; Lukáč, P. Internal stresses during creep of magnesium alloys at 523 K. Mater. Sci. Eng. 2007, A462, 215–219. [Google Scholar] [CrossRef]
- Dobeš, F.; Dymáček, P. Creep behavior of AJ62 Magnesium–Aluminum–Strontium alloy. J. Magnes. Alloys 2020, 8, 414–420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobeš, F.; Dymáček, P. Creep Behavior of Squeeze-Cast Mg–15Gd Alloy. Crystals 2023, 13, 374. https://doi.org/10.3390/cryst13030374
Dobeš F, Dymáček P. Creep Behavior of Squeeze-Cast Mg–15Gd Alloy. Crystals. 2023; 13(3):374. https://doi.org/10.3390/cryst13030374
Chicago/Turabian StyleDobeš, Ferdinand, and Petr Dymáček. 2023. "Creep Behavior of Squeeze-Cast Mg–15Gd Alloy" Crystals 13, no. 3: 374. https://doi.org/10.3390/cryst13030374
APA StyleDobeš, F., & Dymáček, P. (2023). Creep Behavior of Squeeze-Cast Mg–15Gd Alloy. Crystals, 13(3), 374. https://doi.org/10.3390/cryst13030374