Plasma-Assisted Halide Vapor Phase Epitaxy for Low Temperature Growth of III-Nitrides
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayari, T.; Sundaram, S.; Li, X.; Alam, S.; Bishop, C.; El Huni, W.; Jordan, M.B.; Halfaya, Y.; Gautier, S.; Voss, P.L.; et al. Heterogeneous integration of thin-film InGaN-based solar cells on foreign substrates with enhanced performance. ACS Photonics 2018, 5, 3003–3008. [Google Scholar] [CrossRef]
- Li, K.H.; Fu, W.Y.; Choi, H.W. Chip-scale GaN integration. Prog. Quantum Electron. 2020, 70, 100247. [Google Scholar] [CrossRef]
- Bottaro, E.; Rizzo, S.A.; Salerno, N. Circuit models of power MOSFETs leading the way of GaN HEMT modelling—A review. Energies 2022, 15, 3415. [Google Scholar] [CrossRef]
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide band gap devices and their application in power electronics. Energies 2022, 15, 9172. [Google Scholar] [CrossRef]
- Xu, J.; Gu, L.; Ye, Z.; Kargarrazi, S.; Rivas-Davila, J.M. Cascode GaN/SiC: A wide-bandgap heterogenous power device for high-frequency applications. IEEE Trans. Power Electron. 2020, 35, 6340–6349. [Google Scholar] [CrossRef]
- Yin, S.; Wang, C.; Zhu, W.; Yao, J.; Zou, J.; Lin, X.; Luo, C. Single chip super broadband InGaN/GaN LED enabled by nanostructured substrate. Opt. Express 2014, 22, A1380–A1388. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Auf der Maur, M.; Pecchia, A.; Penazzi, G.; Rodrigues, W.; Di Carlo, A. Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations. Phys. Rev. Lett. 2016, 116, 027401. [Google Scholar] [CrossRef] [Green Version]
- Wakahara, A.; Tokuda, T.; Dang, X.Z.; Noda, S.; Sasaki, A. Compositional inhomogeneity and immiscibility of a GaInN ternary alloy. Appl. Phys. Lett. 1997, 71, 906–908. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Kawaguchi, Y.; Shimizu, M.; Sawaki, N.; Zheleva, T.; Davis, R.F.; Tsuda, H.; Taki, W.; Kuwano, N.; Oki, K. The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization. MRS Internet J. Nitride Semicond. Res. 1997, 2, 11. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Yang, W.; Lin, Y.; Wang, H.; Lin, Z.; Zhou, S. GaN-based light-emitting diodes on various substrates: A critical review. Rep. Prog. Phys. 2016, 79, 056501. [Google Scholar] [CrossRef]
- Cordier, Y.; Portail, M.; Chenot, S.; Tottereau, O.; Zielinski, M.; Chassagne, T. AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111). J. Cryst. Growth 2008, 310, 4417–4423. [Google Scholar] [CrossRef]
- Kaneta, A.; Funato, M.; Kawakami, Y. Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra. Phys. Rev. B 2008, 78, 125317. [Google Scholar] [CrossRef] [Green Version]
- Iida, D.; Ohkawa, K. Recent progress in red light-emitting diodes by III-nitride materials. Semicond. Sci. Technol. 2022, 37, 013001. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Reynolds, J.G.; El-Masry, N.A.; Bedair, S.M. Growth and characterization of InxGa1−xN (0 < x < 0.16) templates for controlled emissions from MQW. J. Cryst. Growth 2019, 520, 18–26. [Google Scholar]
- Chan, P.; Rienzi, V.; Lim, N.; Chang, H.M.; Gordon, M.; DenBaars, S.P.; Nakamura, S. Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature. Appl. Phys. Express 2021, 14, 101002. [Google Scholar] [CrossRef]
- Ozaki, T.; Funato, M.; Kawakami, Y. InGaN-based visible light-emitting diodes on ScAlMgO4(0001) substrates. Appl. Phys. Express 2015, 8, 062101. [Google Scholar] [CrossRef]
- Ozaki, T.; Funato, M.; Kawakami, Y. Red-emitting InxGa1−xN/InyGa1−yN quantum wells grown on lattice-matched InyGa1−yN/ScAlMgO4(0001) templates. Appl. Phys. Express 2019, 12, 011007. [Google Scholar] [CrossRef]
- Dussaigne, A.; Barbier, F.; Damilano, B.; Chenot, S.; Grenier, A.; Papon, A.M.; Samuel, B.; Ben Bakir, B.; Vaufrey, D.; Pillet, J.C.; et al. Full InGaN red light emitting diodes. J. Appl. Phys. 2020, 128, 135704. [Google Scholar] [CrossRef]
- Dussaigne, A.; Maitre, P.L.; Haas, H.; Pillet, J.C.; Barbier, F.; Grenier, A.; Michit, N.; Jannaud, A.; Templier, R.; Vaufrey, D.; et al. Full InGaN red (625 nm) micro-LED (10 lm) demonstration on a relaxed pseudo-substrate. Appl. Phys. Express 2021, 14, 092011. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Ley, R.; Gupta, C.; Wong, M.S.; Lynsky, C.; Wang, Y.; Gordon, M.J.; Nakamura, S.; Denbaars, S.P.; Keller, S.; et al. Color-tunable <10 lm square InGaN micro-LEDs on compliant GaN-on-porous-GaN pseudo-substrates. Appl. Phys. Lett. 2020, 117, 061105. [Google Scholar]
- Singh, R.; Doppalapudi, D.; Moustakas, T.D.; Romano, L.T. Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition. Appl. Phys. Lett. 1997, 70, 1089. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Paskov, P.P.; Pozina, G.; Heuken, M.; Schineller, B.; Monemar, B. Hydride vapour phase epitaxy growth and characterization of thick GaN using a vertical HVPE reactor. J. Cryst. Growth 2007, 300, 32–36. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Pozina, G. Optimization of low temperature GaN buffer layers for halide vapor phase epitaxy growth of bulk GaN. J. Cryst. Growth 2013, 366, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Yam, F.K.; Hassan, Z. InGaN: An overview of the growth kinetics, physical properties and emission mechanisms. Superlattices Microstruct. 2008, 43, 1–23. [Google Scholar] [CrossRef]
- Martin, D.; Napierala, J.; Ilegems, M.; Butté, R.; Grandjean, N. High quality thin GaN templates grown by hydride vapor phase epitaxy on sapphire substrates. Appl. Phys. Lett. 2006, 88, 241914. [Google Scholar] [CrossRef]
- Akatsuka, H. Progresses in experimental study of N2 plasma diagnostics by optical emission spectroscopy. In Chemical Kinetics; Patel, V., Ed.; InTech: Vienna, Austria, 2012; p. 297. [Google Scholar] [CrossRef] [Green Version]
- Camacho, J.; Poyato, J.M.L.; Diaz, L.; Santos, M. Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 4573–4590. [Google Scholar] [CrossRef] [Green Version]
- Vickers, M.E.; Kappers, M.J.; Smeeton, T.M.; Thrush, E.J.; Barnard, J.S.; Humphreys, C.J. Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by X-ray scattering. J. Appl. Phys. 2003, 94, 1565–1574. [Google Scholar] [CrossRef]
- Hsu, C.W.; Martinovic, I.; Magnusson, R.; Bakhit, B.; Palisaitis, J.; Persson, P.O.Å.; Rouf, P.; Pedersen, H. Homogeneous high In content InxGa1−xN films by supercycle atomic layer deposition. J. Vac. Sci. Technol. A 2022, 40, 060402. [Google Scholar] [CrossRef]
- Chung, C.W.; Hong, F.C.N. Chlorine-assisted growth of epitaxial InGaN and AlGaN crystals at low temperatures using plasma-enhanced chemical vapor deposition. Cryst. Growth Des. 2023, 23, 37–48. [Google Scholar] [CrossRef]
- Efremov, A.; Svettsov, V.; Sitanov, D.; Balashov, D. A comparative study of plasma parameters and gas phase compositions in Cl2 and HCl direct current glow discharges. Thin Solid Films 2008, 516, 3020–3027. [Google Scholar] [CrossRef]
- Kumagai, Y.; Takemoto, K.; Koukitu, A.; Seki, H. Thermodynamics on halide vapor-phase epitaxy of InN using InCl and InCl3. J. Cryst. Growth 2001, 222, 118–124. [Google Scholar] [CrossRef]
- Pozina, G.; Edwards, N.V.; Bergman, J.P.; Paskova, T.; Monemar, B.; Bremser, M.D.; Davis, R.F. Time-resolved spectroscopy of strained GaN/AlN/6H–SiC heterostructures grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2001, 78, 1062–1064. [Google Scholar] [CrossRef] [Green Version]
- Mosesa, P.G.; Van de Walle, C.G. Band bowing and band alignment in InGaN alloys. Appl. Phys. Lett. 2010, 96, 021908. [Google Scholar] [CrossRef]
- Wetzel, C.; Takeuchi, T.; Yamaguchi, S.; Katoh, H.; Amano, H.; Akasaki, I. Optical band gap in Ga1−xInxN (0 < x < 0.2) on GaN by photoreflection spectroscopy. Appl. Phys. Lett. 1998, 73, 1994–1996. [Google Scholar]
- Deline, V.R.; Katz, W.; Evans, C.A.; Williams, P. Mechanism of the SIMS matrix effect. Appl. Phys. Lett. 1978, 33, 832–835. [Google Scholar] [CrossRef]
- Pozina, G.; Khromov, S.; Hemmingsson, C.; Hultman, L.; Monemar, B. Effect of silicon and oxygen doping on donor bound excitons in bulk GaN. Phys. Rev. B 2011, 84, 165213. [Google Scholar] [CrossRef] [Green Version]
- Fabien, C.A.M.; Gunning, B.P.; Doolittle, W.A.; Fischer, A.M.; Wei, Y.O.; Xie, H.; Ponce, F.A. Low-temperature growth of InGaN films over the entire composition range by MBE. J. Cryst. Growth 2015, 425, 15–118. [Google Scholar] [CrossRef] [Green Version]
- Reshchikov, M.A.; McNamara, J.D.; Helava, H.; Usikov, A.; Makarov, Y. Two yellow luminescence bands in undoped GaN. Sci. Rep. 2018, 8, 8091. [Google Scholar] [CrossRef] [Green Version]
- Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy. J. Appl. Phys. 2014, 116, 223503. [Google Scholar] [CrossRef] [Green Version]
In Boat Temperature (°C) | In Content % (XRD) | In Content % (Absorption) |
---|---|---|
260 | 3.7 | 2.3 |
320 | 5.8 | 1.7 |
460 | 2.8 | 1.0 |
HCl (mL/min), Tg = 570 °C | ||
2 | - | 0.5 |
5 | 8.3 | 0.4 |
10 | 6.3 (SIMS 0.03) | 1.5 |
HCl (mL/min), Tg = 620 °C | ||
5 | 5.8 (SIMS 0.04) | 1.7 |
10 | 7.2 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozina, G.; Hsu, C.-W.; Abrikossova, N.; Hemmingsson, C. Plasma-Assisted Halide Vapor Phase Epitaxy for Low Temperature Growth of III-Nitrides. Crystals 2023, 13, 373. https://doi.org/10.3390/cryst13030373
Pozina G, Hsu C-W, Abrikossova N, Hemmingsson C. Plasma-Assisted Halide Vapor Phase Epitaxy for Low Temperature Growth of III-Nitrides. Crystals. 2023; 13(3):373. https://doi.org/10.3390/cryst13030373
Chicago/Turabian StylePozina, Galia, Chih-Wei Hsu, Natalia Abrikossova, and Carl Hemmingsson. 2023. "Plasma-Assisted Halide Vapor Phase Epitaxy for Low Temperature Growth of III-Nitrides" Crystals 13, no. 3: 373. https://doi.org/10.3390/cryst13030373
APA StylePozina, G., Hsu, C. -W., Abrikossova, N., & Hemmingsson, C. (2023). Plasma-Assisted Halide Vapor Phase Epitaxy for Low Temperature Growth of III-Nitrides. Crystals, 13(3), 373. https://doi.org/10.3390/cryst13030373