Photocatalytic Efficiency of TiO2/Fe2O3 and TiO2/WO3 Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
- TiO2 + 0.1/0.2/0.3/0.5 wt.% WO3.
- TiO2 + 0.1/0.2/0.3/0.5 wt.% Fe2O3.
- TiO2 + 0.1% wt.% WO3 + 0.1/0.2/0.3/0.5 wt.% Fe2O3
- TiO2 + 0.2% wt.% WO3 + 0.1/0.2/0.3/0.5 wt.% Fe2O3
- TiO2 + 0.3% wt.% WO3 + 0.1/0.2/0.3/0.5 wt.% Fe2O3
- TiO2 + 0.5% wt.% WO3 + 0.1/0.2/0.3/0.5 wt.% Fe2O3
3. Results and Discussion
3.1. TiO2-Based Materials Characterization
3.2. Photodegradation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fox, M.A.; Dulay, M.T. Heterogeneous Photocatalysis. Chem. Rev. 1993, 93, 341–357. [Google Scholar] [CrossRef]
- Hashimoto, H.; Irie, H.; Fujishima, A. Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Miyauchi, M.; Irie, H.; Liu, M.; Qiu, X.; Yu, H.; Sunada, K.; Hashimoto, K. Visible-Light-Sensitive Photocatalyst: Nanocluster-Grafted Titanium Dioxide for Indoor Environmental Remediation. J. Phys. Chem. Lett. 2016, 7, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Cacciato, G.; Zimbone, M.; Ruffino, F.; Grimaldi, M.G. TiO2 nanostructures and nanocomposites for sustainable photocatalytic water purification. In Green Nanotechnology—Overview and Further Prospects; Larramendy, M., Soloneski, S., Eds.; InTechOpen: London, UK, 2016; pp. 87–116. [Google Scholar]
- Kumar, O.P.; Shahzad, K.; Altaf Nazir, M.; Farooq, N.; Malik, M.; Ahmad Shah, S.S.; Ur Rehman, A. Photo-Fenton activated C3N4x/AgOy@Co1-xBi0•1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt. Mater. 2022, 126, 112199. [Google Scholar] [CrossRef]
- Jamshaid, M.; Altaf Nazir, M.; Najam, T.; Ahmad Shah, S.S.; Khan, H.M.; Ur Rehman, A. Facile synthesis of Yb3+-Zn2+ substituted M type hexaferrites: Structural, electric and photocatalytic properties under visible light for methylene blue removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Sanz, R.; Buccheri, A.M.; Zimbone, M.; Scuderi, V.; Amiard, G.; Impellizzeri, G.; Romano, L.; Privitera, V. Photoactive layered nanocomposites obtained by direct transferring of anodic TiO2 nanotubes to commodity thermoplastics. Appl. Sur. Sci. 2017, 399, 451–462. [Google Scholar] [CrossRef]
- Hardscale, F.D. Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts. J. Ark. Acad. Sci. 2011, 65, 43–48. [Google Scholar]
- Li, Y.; Xiang, Y.; Peng, S.; Wang, X.; Zhou, L. Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-light photoelectrochemical H2 generation. Electrochim. Acta 2013, 87, 794–800. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, G.; Zou, K.; Tian, F.; Yadav, T.P.; Xu, H.; Yang, G.; Li, H.; Qu, L. Highly efficient removal of organic pollutants from wastewater using a recyclable graphene oxide membrane intercalated with g-C3N4@TiO2-nanowires. J. Mol. Liq. 2021, 337, 116461. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, N.; Li, X.; Zhou, C.; Peng, B.; Chen, H.; Zhang, H. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124511. [Google Scholar] [CrossRef]
- Sanzone, G.; Zimbone, M.; Cacciato, G.; Ruffino, F.; Carles, R.; Privitera, V.; Grimaldi, M.G. Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices Microstruct. 2018, 123, 394–402. [Google Scholar] [CrossRef]
- Vu, T.P.T.; Tran, D.T.; Dang, V.C. Novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance. J. Colloid Interface Sci. 2022, 610, 49–60. [Google Scholar] [CrossRef]
- Mei, Q.; Zhang, F.; Wang, N.; Yang, Y.; We, R.; Wang, W. TiO2/Fe2O3 heterostructures with enhanced photocatalytic reduction of Cr(VI) under visible light irradiation. RCS Adv. 2019, 9, 22764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Gil, K.R.; Stephens, Z.D.; Stavila, V.; Robinson, D.B. Composite WO3/TiO2 Nanostructures for High Electrochromic Activity. ACS Appl. Mater. Interfaces 2015, 7, 2202–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makula, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV−Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Energy level matching of Fe(III) ions grafted at surface and doped in bulk for efficient. J. Am. Chem. Soc. 2013, 135, 10064–10072. [Google Scholar] [CrossRef]
- Yu, H.; Irie, H.; Hashimoto, K. Conduction Band Energy Level Control of Titanium Dioxide: Toward an Efficient Visible-Light-Sensitive Photocatalyst. J. Am. Chem. Soc. 2010, 132, 6898–6899. [Google Scholar] [CrossRef]
- Nowotny, M.K.; Sheppard, L.R.; Bak, T.; Nowotny, J. Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. J. Phys. Chem. C 2008, 112, 5275–5300. [Google Scholar] [CrossRef]
- Tamirat, A.G.; Rick, J.; Dubale, A.A.; Su, W.N.; Hwang, B.J. Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 2016, 1, 243–267. [Google Scholar] [CrossRef]
- Lee, S.F.; Jimenez-Relinque, E.; Martinez, I.; Castellote, M. Photoelectrochemical global approach to the behavior of nanostructured anatase under different irradiation conditions. Catal. Today 2022, 397–399, 286–295. [Google Scholar] [CrossRef]
- Ju, H.; Zhou, J.; Cai, C.; Chen, H. The Electrochemical Behavior of Methylene Blue at a Microcylinder Carbon Fiber Electrode. Electroanalysis 1995, 7, 1165–1170. [Google Scholar] [CrossRef]
- Liu, B.; Wen, L.; Nakata, K.; Zhao, X.; Liu, S.; Ochiai, T.; Murakami, T.; Fujishima, A. Polymeric Adsorption of Methylene Blue in TiO2 Colloids—Highly Sensitive Thermochromism and Selective Photocatalysis. Chem. Eur. J. 2012, 18, 12705–12711. [Google Scholar] [CrossRef]
Photocatalysts | SBET [m2g−1] | [Dp nm] | VP [cm3g−1] |
---|---|---|---|
Pristine TiO2 | 57.0 ± 0.1 | 32.0 ± 0.1 | 0.9437 ± 0.0001 |
Pristine Fe2O3 | 32.4 ± 0.1 | 3.0 ± 0.1 | 0.0349 ± 0.0001 |
Pristine WO3 | 2.3 ± 0.1 | 11.8 ± 0.1 | 0.0228 ± 0.0001 |
TiO2—900 °C | 0.7 ± 0.1 | 3.2 ± 0.1 | 0.0036 ± 0.0001 |
TiO2—800 °C | 2.6 ± 0.1 | 3.3 ± 0.1 | 0.0174 ± 0.0001 |
TiO2—700 °C | 15.1 ± 0.1 | 33.7 ± 0.1 | 0.2952 ± 0.0001 |
TiO2@Fe2O3—700 °C | 17.5 ± 0.1 | 28.8 ± 0.1 | 0.2630 ± 0.0001 |
TiO2@WO3—700 °C | 20.1 ± 0.1 | 24.5 ± 0.1 | 0.3430 ± 0.0001 |
Photocatalysts at 700 °C | Eg [eV] (Sub-Bandgap) |
---|---|
TiO2 | 3.02 |
TiO2@WO3 0.1% | 3.02 |
TiO2@WO3 0.2% | 3.01 |
TiO2@WO3 0.3% | 3.00 |
TiO2@Fe2O3 0.1% | 3.07 |
TiO2@Fe2O3 0.2% | 3.05 (2.71) |
TiO2@Fe2O3 0.3% | 3.03 (2.71) |
TiO2@Fe2O3—WO3 0.1% | 3.02 |
TiO2@Fe2O3—WO3 0.2% | 3.02 (2.66) |
TiO2@Fe2O3—WO3 0.3% | 3.00 (2.66) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrida, F.; Calcagno, L.; Pezzotti Escobar, G.; Zimbone, M. Photocatalytic Efficiency of TiO2/Fe2O3 and TiO2/WO3 Nanocomposites. Crystals 2023, 13, 372. https://doi.org/10.3390/cryst13030372
Giuffrida F, Calcagno L, Pezzotti Escobar G, Zimbone M. Photocatalytic Efficiency of TiO2/Fe2O3 and TiO2/WO3 Nanocomposites. Crystals. 2023; 13(3):372. https://doi.org/10.3390/cryst13030372
Chicago/Turabian StyleGiuffrida, Federico, Lucia Calcagno, Gianni Pezzotti Escobar, and Massimo Zimbone. 2023. "Photocatalytic Efficiency of TiO2/Fe2O3 and TiO2/WO3 Nanocomposites" Crystals 13, no. 3: 372. https://doi.org/10.3390/cryst13030372
APA StyleGiuffrida, F., Calcagno, L., Pezzotti Escobar, G., & Zimbone, M. (2023). Photocatalytic Efficiency of TiO2/Fe2O3 and TiO2/WO3 Nanocomposites. Crystals, 13(3), 372. https://doi.org/10.3390/cryst13030372