Microstructures and Mechanical Properties of Annealed Ti50Ni47Fe3 Shape Memory Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Observations
3.2. XRD Analysis
3.3. Mechanical Properties
3.4. Fracture Characteristic
4. Conclusions
- (1)
- The microstructure of Ti50Ni47Fe3 alloy is composed of a TiNi matrix and Ti2Ni second phase. With the increase of the annealing temperature, the alloy structure changes from a long strip-shaped deformation structure to an equiaxed recrystallization structure, and the recrystallization process occurs dramatically at 600 °C. With a further increase of the annealing temperature, the devouring of grains occurs and results in the growth of grains.
- (2)
- With the increase of annealing temperatures, both the UTS and YS of Ti50Ni47Fe3 alloy decrease. The highest EL of Ti50Ni47Fe3 alloy is present at 600 °C and then decreases sharply. This is because with the increase of the annealing temperature, the alloy will experience three stages: recovery, recrystallization and grain growth. In the recrystallization stage, Ti50Ni47Fe3 alloy has the best strength–toughness match.
- (3)
- With the increase of the annealing temperature, due to the recrystallization and grain-growth process, the fracture surface tends to flatten out at 600 °C; furthermore, dimples become the most uniform at the same time, and the alloy has the best plasticity. After exceeding 600 °C, the dimple size at the fracture surface of the alloy is uneven, and the plasticity decreases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huo, X.J.; Chen, P.; Lahkar, S.; Jin, M.J.; Han, X.C.; Song, Y.W.; Wang, X.D. Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy. Acta Mater. 2022, 227, 117688. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, Y.; Young, M.L. Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate. Mater. Sci. Eng. A 2021, 804, 140753. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Cai, W.; Meng, X.L.; Zhao, L.C. Recent development of TiNi-based shape memory alloys. Curr. Opin. Solid State Mater. Sci. 2005, 9, 296–302. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Recent developments in the research of shape momery alloys. Intermetallics 1999, 7, 511–528. [Google Scholar] [CrossRef]
- Sreekumar, M.; Nagaraja, T.; Singaperumal, M.; Zoppi, M.; Molfino, R. Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind. Robot. 2007, 34, 285–294. [Google Scholar] [CrossRef]
- Liang, Q.L.; Zhao, S.S.; Liang, C.X.; Zhao, T.F.; Wang, D.; Ding, X.D.; Li, S.L.; Wang, Y.D.; Zheng, Y.F.; Ren, X.B.; et al. Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Mater. 2022, 231, 117890. [Google Scholar] [CrossRef]
- Mahmud, A.S.; Wu, Z.G.; Yang, H.; Liu, Y.N. Effect of cold work and partial annealing on thermomechanical behaviour of Ti-50.5at% Ni. Shape Mem. Superelast. 2017, 3, 57–66. [Google Scholar] [CrossRef]
- Liang, Y.L.; Jiang, S.Y.; Zhang, Y.Q.; Hu, L.; Zhao, C.Z. Microstructure evolution and deformation mechanism of NiTiFe shape memory alloy based on plane strain compression and subsequent annealing. Mater. Chem. Phys. 2018, 215, 112–120. [Google Scholar] [CrossRef]
- Nam, T.H.; Saburi, T.; Shimizu, K. Cu-Content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 1990, 31, 959–967. [Google Scholar] [CrossRef]
- Wang, G.C.; Hu, K.P.; Tong, Y.X.; Tian, B.; Chen, F.; Li, L.; Zheng, Y.F.; Gao, Z.Y. Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys. Intermetallics 2016, 72, 30–35. [Google Scholar] [CrossRef]
- Tong, Y.X.; Jiang, P.C.; Chen, F.; Tian, B.; Li, L.; Zheng, Y.F.; Gunderov, D.V.; Valiev, R.Z. Microstructure and martensitic transformation of an ultrafine-grained TiNiNb shape memory alloy processed by equal channel angular pressing. Intermetallics 2014, 49, 81–86. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.F.; Tong, Y.X.; Tian, B.; Chen, F.; Li, L. Microstructure and martensitic transformation of TiNiNbB shape memory alloys. Intermetallics 2015, 64, 32–36. [Google Scholar] [CrossRef]
- Choi, M.; Fukuda, T.; Kakeshita, T. Anomalies in resistivity, magnetic susceptibility and specific heat in iron-doped Ti-Ni shape memory alloys. Scr. Mater. 2005, 53, 869–873. [Google Scholar] [CrossRef]
- Ingale, B.D.; Wei, W.C.; Chang, P.C.; Kuo, Y.K.; Wu, S.K. Anomalous transport and thermal properties of NiTi and with Cu and Fe-doped shape memory alloys near the martensitic transition. J. Appl. Phys. 2011, 110, 113721. [Google Scholar] [CrossRef]
- Ji, Y.C.; Wang, D.; Ding, X.D.; Otsuka, K.; Ren, X.B. Origin of an isothermal R-martensite formation in Ni-rich Ti-Ni solid solution: Crystallization of strain glass. Phys. Rev. Lett. 2015, 114, 055701. [Google Scholar] [CrossRef]
- Chang, P.C.; Ko, M.L.; Ramachandran, B.; Kuo, Y.K.; Chien, C.; Wu, S.K. Comparative study of R-phase martensitic transformations in TiNi-based shape memory alloys induced by point defects and precipitates. Intermetallics 2017, 84, 130–135. [Google Scholar] [CrossRef]
- Ramachandran, B.; Chang, P.C.; Kuo, Y.K.; Chen, C.; Wu, S.K. Characteristics of martensitic and strain-glass transitions of the Fe-substituted TiNi shape memory alloys probed by transport and thermal measurements. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Yin, X.Q.; Park, C.H.; Li, Y.F.; Ye, W.J.; Zuo, Y.T.; Lee, S.W.; Yeom, J.T.; Mi, X.J. Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 2017, 693, 426–431. [Google Scholar] [CrossRef]
- Wang, S.J.; Mi, X.J.; Yin, X.Q.; Li, Y.F. Deformation behavior of TiNiFe alloy in isothermal compression. Rare Met. 2012, 31, 323–327. [Google Scholar] [CrossRef]
- Li, Y.F.; Kang, X.Y.; Yin, X.Q.; Xie, H.F.; Mi, X.J. Microstructure and mechanical properties of cold-rolled Ti50Ni47Fe3 shape memory alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 2890–2895. [Google Scholar] [CrossRef]
- Karaca, H.E.; Kaya, I.; Tobe, H.; Basaran, B.; Nagasako, M.; Kainuma, R.; Chumlyakov, Y. Shape memory behavior of high strength Ni54Ti46 alloys. Mater. Sci. Eng. A 2013, 580, 66–70. [Google Scholar] [CrossRef]
- Sergueeva, A.V.; Song, C.; Valiev, R.Z.; Mukherjee, A.K. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater. Sci. Eng. A 2003, 339, 159–165. [Google Scholar] [CrossRef]
- Ishida, A.; Sato, M. Microstructure and shape memory behaviour of annealed Ti51.5Ni(48.5-x)Cux (x = 6.5–20.9) thin films. Philos. Mag. 2007, 87, 5523–5538. [Google Scholar] [CrossRef]
- Okamoto, Y.; Hamanaka, H.; Miura, F.; Tamura, H.; Horikawa, H. Reversible changes in yield stress and transformation temperature of a NiTi alloy by alternate heat treatments. Scr. Metal. Mater. 1988, 22, 517–520. [Google Scholar] [CrossRef]
- Abujudom, D.N.; Thoma, P.E.; Fariabi, S. The effect of cold work and heat treatment on the phase transformations of near equiatomic NiTi shape memory alloy. Mater. Sci. Forum. 1991, 56–58, 565–570. [Google Scholar] [CrossRef]
- Choi, E.; Choi, J.; Seo, J. Recovery stress effect of crimped NiTi SMA fibers on dynamic direct tensile behavior of mortar with considering fiber volume fraction. Eng. Struct. 2022, 262, 114328. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Li, W.; Bednarcik, J.; Dippel, A.C. High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling. Mater. Des. 2020, 193, 108875. [Google Scholar] [CrossRef]
- Cui, B.; Yao, J.; Wu, Y.; Cai, W. Effect of cold rolling ratio on the microstructure and recovery properties of Ti-Ni-Nb-Co shape memory alloys. J. Alloy. Compd. 2019, 772, 728–734. [Google Scholar] [CrossRef]
Element | Fe | Ni | C | O | Ti |
---|---|---|---|---|---|
Content (wt. %) | 3.27 | 52.16 | 0.0028 | <0.002 | Bal. |
Annealing Temperature/°C | 400 | 600 | 800 |
---|---|---|---|
Average Grain Size/μm | 5.6 | 5.3 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, Y.; Song, X.; Yu, Y.; Ye, W.; Hui, S. Microstructures and Mechanical Properties of Annealed Ti50Ni47Fe3 Shape Memory Alloy. Crystals 2023, 13, 706. https://doi.org/10.3390/cryst13040706
Liu S, Li Y, Song X, Yu Y, Ye W, Hui S. Microstructures and Mechanical Properties of Annealed Ti50Ni47Fe3 Shape Memory Alloy. Crystals. 2023; 13(4):706. https://doi.org/10.3390/cryst13040706
Chicago/Turabian StyleLiu, Shuwei, Yanfeng Li, Xiaoyun Song, Yang Yu, Wenjun Ye, and Songxiao Hui. 2023. "Microstructures and Mechanical Properties of Annealed Ti50Ni47Fe3 Shape Memory Alloy" Crystals 13, no. 4: 706. https://doi.org/10.3390/cryst13040706
APA StyleLiu, S., Li, Y., Song, X., Yu, Y., Ye, W., & Hui, S. (2023). Microstructures and Mechanical Properties of Annealed Ti50Ni47Fe3 Shape Memory Alloy. Crystals, 13(4), 706. https://doi.org/10.3390/cryst13040706