Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their Imaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthetic Procedures of RTPL Materials
3. Results and Discussion
3.1. Design and Synthesis of RTPL Materials
3.2. Characterization of the RTPL Materials
3.3. Optical Properties of RTPL Materials
3.4. Information Encryption and Anti-Counterfeiting
3.5. In Situ Long Afterglow Imaging of Celery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, G.; Yang, X.; Zhang, Y.; Fan, Y.; Chen, P.; Cui, H.; Liu, Y.; Shi, X.; Shang, Q.; Tang, B. Round-the-Clock Photocatalytic Hydrogen Production with High Efficiency by a Long-Afterglow Material. Angew. Chem. Int. Ed. 2019, 58, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J.V.; Pu, K. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110. [Google Scholar] [CrossRef]
- Yang, X.; Yan, D. Long-afterglow metal-organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci. 2016, 7, 4519–4526. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shang, Z.; Shi, M.; Cao, P.; Yang, B.; Zou, J. Preparing and testing the reliability of long-afterglow SrAl2O4:Eu2+, Dy3+ phosphor flexible films for temperature sensing. RSC Adv. 2020, 10, 11418–11425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, S.; Zhi, J.; Jiang, R.; Chen, J.; Zhong, H.; Shi, H.; Ma, X.; An, Z. Microscopic Afterglow Bioimaging by Ultralong Organic Phosphorescent Nanoparticles in Living Cells and Zebrafish. Anal. Chem. 2021, 93, 6516–6522. [Google Scholar] [CrossRef]
- He, W.; Sun, X.; Cao, X. Construction and Multifunctional Applications of Visible-Light-Excited Multicolor Long Afterglow Carbon Dots/Boron Oxide Composites. ACS Sustain. Chem. Eng. 2021, 9, 4477–4486. [Google Scholar] [CrossRef]
- Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y. Single-Phase White-Light-Emitting and Photoluminescent Color Tuning Coordination Assemblies. Chem. Rev. 2018, 118, 8889–8935. [Google Scholar] [CrossRef] [PubMed]
- Bilgic, A. Novel BODIPY-based fluorescent Lycopodium clavatum sporopollenin microcapsules for detection and removal of Cu(II) ions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127658. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Sahin, E.; Guler, E. Cu (II) Chemosensor Based on a Fluorogenic Bodipy-Salophen Combination: Sensitivity and Selectivity Studies. J. Fluoresc. 2016, 26, 1997–2004. [Google Scholar] [CrossRef]
- Kursunlu, A.N. Synthesis and photophysical properties of modifiable single, dual, and triple-boron dipyrromethene (Bodipy) complexes. Tetrahedron Lett. 2015, 56, 1873–1877. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, R.; Li, H.; Yuan, J.; Wan, Y.; Jiang, H.; Chen, C.; Si, Y.; Zheng, C.; Yang, B.; et al. Resonance-Activated Spin-Flipping for Efficient Organic Ultralong Room-Temperature Phosphorescence. Adv. Mater. 2018, 30, e1803856. [Google Scholar] [CrossRef] [PubMed]
- Hai, O.; Pei, M.; Yang, E.; Ren, Q.; Wu, X.; Zhu, J.; Zhao, Y.; Du, L. Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts. J. Alloys Compd. 2021, 866, 158752. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, K.; Wang, Y.; Wang, S.; Li, Z.; Lin, H. Visible-Light-Excited Room Temperature Phosphorescent Carbon Dots. Nanomaterials 2020, 10, 464. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Wang, Y.; Li, Z.; Lin, H. Afterglow of carbon dots: Mechanism, strategy and applications. Mater. Chem. Front. 2020, 4, 386–399. [Google Scholar] [CrossRef]
- Gimenez, R.; Crespo, O.; Diosdado, B.; Elduque, A. Liquid crystalline copper(i) complexes with bright room temperature phosphorescence. J. Mater. Chem. C 2020, 8, 6552–6557. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation. Angew. Chem. Int. Ed. 2018, 57, 6216–6220. [Google Scholar] [CrossRef]
- Nidhankar, A.D.; Goudappagouda; Wakchaure, V.C.; Babu, S.S. Efficient metal-free organic room temperature phosphors. Chem. Sci. 2021, 12, 4216–4236. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, K.; Qiu, X.; Rao, B.; Pei, D.; Li, A.; An, Z.; He, G. Tunable ultralong organic phosphorescence modulated by main-group elements with different Lewis acidity and basicity. J. Mater. Chem. C 2020, 8, 14740–14747. [Google Scholar] [CrossRef]
- Patir, K.; Gogoi, S.K. Long Afterglow Room-Temperature Phosphorescence from Nanopebbles: A Urea Pyrolysis Product. Chem. Asian J. 2019, 14, 2573–2578. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Q.; Yue, L.; Wang, Y.; Cui, S.; Zhang, H.; Xue, S.; Yang, W. Room Temperature Phosphorescent (RTP) Thermoplastic Elastomers with Dual and Variable RTP Emission, Photo-Patterning Memory Effect, and Dynamic Deformation RTP Response. Adv. Sci. 2022, 9, 2103402. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Wang, Y.-C.; Yu, X.-S.; Zhao, Y.; Ren, X.-K.; Zhao, J.-F.; Wang, J.; Jiang, X.-Q.; Chang, W.-Y.; Zheng, J.-F.; et al. Isophthalate-Based Room Temperature Phosphorescence: From Small Molecule to Side-Chain Jacketed Liquid Crystalline Polymer. Macromolecules 2019, 52, 2495–2503. [Google Scholar] [CrossRef]
- Gutierrez, M.; Martin, C.; Hofkens, J.; Tan, J.-C. Long-lived highly emissive MOFs as potential candidates for multiphotonic applications. J. Mater. Chem. C 2021, 9, 15463–15469. [Google Scholar] [CrossRef]
- DeRosa, C.A.; Kolpaczynska, M.; Kerr, C.; Daly, M.L.; Morris, W.A.; Fraser, C.L. Oxygen-Sensing Difluoroboron Thienyl Phenyl beta-Diketonate Polylactides. Chempluschem 2017, 82, 399–406. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Zhou, Z.; Zhang, H.; Zhang, X.; Zhuang, J.; Liu, Y.; Lei, B.; Hu, C. A Universal Strategy for Activating the Multicolor Room-Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angew. Chem. Int. Ed. 2019, 58, 7278–7283. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, M.; Huang, K.; Zhi, J.; Sun, C.; Wang, K.; Zhou, Q.; Gao, L.; Jia, Q.; Shi, H.; et al. Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Sci. China Mater. 2020, 63, 316–324. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Yang, J.; Fang, M.; Ding, D.; Tang, B.Z.; Li, Z. High Performance of Simple Organic Phosphorescence Host-Guest Materials and their Application in Time-Resolved Bioimaging. Adv. Mater. 2021, 33, e2007811. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Gao, H.; Yang, S.; Ding, D.; Lin, Z.; Ling, Q. Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: Advanced anti-counterfeiting and in vivo imaging application. Nano Res. 2020, 13, 1035–1043. [Google Scholar] [CrossRef]
- Lu, C.; Su, Q.; Yang, X. Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale 2019, 11, 16036–16042. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Gou, S.-S.; Liu, K.-K.; Wu, W.-J.; Guo, C.-Z.; Lu, S.-Y.; Zang, J.-H.; Wu, X.-Y.; Lou, Q.; Dong, L.; et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900. [Google Scholar] [CrossRef]
- Tao, S.; Lu, S.; Geng, Y.; Zhu, S.; Redfern, S.A.T.; Song, Y.; Feng, T.; Xu, W.; Yang, B. Design of Metal-Free Polymer Carbon Dots: A New Class of Room-Temperature Phosphorescent Materials. Angew. Chem. Int. Ed. 2018, 57, 2393–2398. [Google Scholar] [CrossRef]
- Wang, B.; Lu, S. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, C.-Y.; Liu, Y. A Novel One-Step Approach to Synthesize Fluorescent Carbon Nanoparticles. Eur. J. Inorg. Chem. 2010, 2010, 4411–4414. [Google Scholar] [CrossRef]
- Chai, Y.; Feng, Y.; Zhang, K.; Li, J. Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery—A Review. Pharmaceutics 2022, 14, 2482. [Google Scholar] [CrossRef]
- Peng, H.; Travas-Sejdic, J. Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates. Chem. Mater. 2009, 21, 5563–5565. [Google Scholar] [CrossRef]
- de Medeiros, T.V.; Manioudakis, J.; Noun, F.; Macairan, J.-R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195. [Google Scholar] [CrossRef]
- Liang, R.; Huo, L.; Yu, A.; Wang, J.; Jia, C.; Li, J. A micro-wave strategy for synthesizing room temperature phosphorescent materials. Chin. Chem. Lett. 2022, 33, 243–246. [Google Scholar] [CrossRef]
- Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Carbon Dots with Dual-Emissive, Robust, and Aggregation-Induced Room-Temperature Phosphorescence Characteristics. Angew. Chem. Int. Ed. 2020, 59, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.W.; Yang, J.C. In situ UHV-TEM investigation of the kinetics of initial stages of oxidation on the roughened Cu(110) surface. Surf. Sci. 2004, 559, 100–110. [Google Scholar] [CrossRef]
- Patel, V.R.; Agrawal, Y.K. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2011, 2, 81–87. [Google Scholar] [CrossRef]
- Missana, T.; Adell, A. On the applicability of DLVO theory to the prediction of clay colloids stability. J. Colloid Interface Sci. 2000, 230, 150–156. [Google Scholar] [CrossRef]
- Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Zheng, C.; Tao, S.; Yang, B. Polymer-Structure-Induced Room-Temperature Phosphorescence of Carbon Dot Materials. Small Struct. 2023, 2200327. [Google Scholar] [CrossRef]
- Bilgic, A.; Cimen, A. A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr(VI) metal ions in the aqueous medium. J. Mol. Liq. 2020, 312, 113398. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zhuang, J.; Zhang, H.; Hu, C.; Zheng, M.; Lei, B.; Liu, Y. The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon 2020, 165, 306–316. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Hu, L.; Cao, Y.; Lai, J.; Cao, F.; Gu, J.; Cao, X. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications. J. Mater. Chem. C 2021, 9, 4425–4443. [Google Scholar] [CrossRef]
- Zhen, X.; Qu, R.; Chen, W.; Wu, W.; Jiang, X. The development of phosphorescent probes for in vitro and in vivo bioimaging. Biomater. Sci. 2021, 9, 285–300. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Zhang, X.; Wang, M.; Wu, Y.-L.; Chen, X. Combinatorial Nano-Bio Interfaces. ACS Nano 2018, 12, 5078–5084. [Google Scholar] [CrossRef]
- Wang, W.; Sedykh, A.; Sun, H.; Zhao, L.; Russo, D.P.; Zhou, H.; Yan, B.; Zhu, H. Predicting Nano-Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling. ACS Nano 2017, 11, 12641–12649. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Xia, Y.; Li, P.; Zhang, S.; Li, L.; Hu, D.; Shi, D.; Song, K. Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their Imaging Applications. Crystals 2023, 13, 705. https://doi.org/10.3390/cryst13040705
Shen Y, Xia Y, Li P, Zhang S, Li L, Hu D, Shi D, Song K. Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their Imaging Applications. Crystals. 2023; 13(4):705. https://doi.org/10.3390/cryst13040705
Chicago/Turabian StyleShen, Yong, Yunfei Xia, Ping Li, Shuo Zhang, Linlin Li, Die Hu, Dongfang Shi, and Kai Song. 2023. "Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their Imaging Applications" Crystals 13, no. 4: 705. https://doi.org/10.3390/cryst13040705
APA StyleShen, Y., Xia, Y., Li, P., Zhang, S., Li, L., Hu, D., Shi, D., & Song, K. (2023). Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their Imaging Applications. Crystals, 13(4), 705. https://doi.org/10.3390/cryst13040705