Crystal Structures of 3,3′,5,5′-Tetrabromo-4,4′-bipyridine and Co(II) Coordination Polymer Based Thereon
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of 2
2.2. X-ray Diffractometry
2.3. Powder X-ray Diffractometry
2.4. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Emerging Multifunctional Metal–Organic Framework Materials. Adv. Mater. 2016, 28, 8819–8860. [Google Scholar] [CrossRef]
- Andreichenko, A.A.; Burlak, P.V.; Kovalenko, K.A.; Samsonenko, D.G.; Fedin, V.P. Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on the Amide-Functionalized Tetracarboxylate Ligand: Synthesis, Crystal Structure, and Luminescent Properties. J. Struct. Chem. 2022, 63, 378–387. [Google Scholar] [CrossRef]
- Kiraev, S.R.; Nikolaevskii, S.A.; Kiskin, M.A.; Ananyev, I.V.; Varaksina, E.A.; Taydakov, I.V.; Aleksandrov, G.G.; Goloveshkin, A.S.; Sidorov, A.A.; Lyssenko, K.A.; et al. Synthesis, structure and photoluminescence properties of {Zn2Ln2} heterometallic complexes with anions of 1-naphthylacetic acid and N-donor heterocyclic ligands. Inorg. Chim. Acta 2018, 477, 15–23. [Google Scholar] [CrossRef]
- Primakov, P.V.; Denisov, G.L.; Novikov, V.V.; Lependina, O.L.; Korlyukov, A.A.; Nelyubina, Y.V. Calcium-based coordination polymers from a solvothermal synthesis of HKUST-1 in 3D printed autoclaves. Mendeleev Commun. 2022, 32, 105–108. [Google Scholar] [CrossRef]
- Li, G.-L.; Yin, W.-D.; Zhang, J.-Y.; Du, G.-J.; Xia, Y.-H.; Liu, G.-Z. A 3D Zn(II) Metal-Organic Framework Based on Citraconic Acid and 1,2-Bi(4-pyridyl)ethylene Mixed Ligands: Crystal Structure, Luminescence, and [2 + 2] Cycloaddition Reaction. Russ. J. Inorg. Chem. 2022, 67, 1745–1750. [Google Scholar]
- Guo, L.-D.; Zhao, X.-H.; Liu, Y.-Y.; Zuo, X.-R.; Yao, J.; Sun, J.-R.; Xu, D.-M.; Li, F.-P.; Li, W.-H. In Situ Ligand Synthesis Afforded Two New Metal-Organic Compounds: Luminescent and Photocatalytic Properties. Russ. J. Inorg. Chem. 2022, 67, 2140–2147. [Google Scholar] [CrossRef]
- Zhang, X.; Da Silva, I.; Fazzi, R.; Sheveleva, A.M.; Han, X.; Spencer, B.F.; Sapchenko, S.A.; Tuna, F.; McInnes, E.J.L.; Li, M.; et al. Iodine Adsorption in a Redox-Active Metal-Organic Framework: Electrical Conductivity Induced by Host-Guest Charge-Transfer. Inorg. Chem. 2019, 58, 14145–14150. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, X.; Kang, X.; Chen, Y.; Xu, S.; Smith, G.L.; Tillotson, E.; Cheng, Y.; McCormick McPherson, L.J.; Teat, S.J.; et al. Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angew. Chem. Int. Ed. 2021, 60, 15541–15547. [Google Scholar] [CrossRef]
- Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O.M. Structures of Metal-Organic Frameworks with Rod Secondary Building Units. Chem. Rev. 2016, 116, 12466–12535. [Google Scholar] [CrossRef]
- Sapianik, A.A.; Dudko, E.R.; Kovalenko, K.A.; Barsukova, M.O.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Metal-Organic Frameworks for Highly Selective Separation of Xylene Isomers and Single-Crystal X-ray Study of Aromatic Guest-Host Inclusion Compounds. ACS Appl. Mater. Interfaces 2021, 13, 14768–14777. [Google Scholar] [CrossRef]
- Xu, N.; Hu, J.; Wang, L.; Luo, D.; Sun, W.; Hu, Y.; Wang, D.; Cui, X.; Xing, H.; Zhang, Y. A TIFSIX pillared MOF with unprecedented zsd topology for efficient separation of acetylene from quaternary mixtures. Chem. Eng. J. 2022, 450, 138034. [Google Scholar] [CrossRef]
- Pal, A.; Lin, J.-B.; Chand, S.; Das, M.C. A 3D Microporous MOF with mab Topology for Selective CO2 Adsorption and Separation. ChemistrySelect 2018, 3, 917–921. [Google Scholar] [CrossRef]
- Pal, S.C.; Ahmed, R.; Manna, A.K.; Das, M.C. Potential of a pH-Stable Microporous MOF for C2H2/C2H4 and C2H2/CO2 Gas Separations under Ambient Conditions. Inorg. Chem. 2022, 61, 18293–18302. [Google Scholar] [CrossRef]
- Pal, A.; Chand, S.; Elahi, S.M.; Das, M.C. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading. Dalt. Trans. 2017, 46, 15280–15286. [Google Scholar] [CrossRef] [PubMed]
- Sapianik, A.A.; Kovalenko, K.A.; Samsonenko, D.G.; Barsukova, M.O.; Dybtsev, D.N.; Fedin, V.P. Exceptionally effective benzene/cyclohexane separation using a nitro-decorated metal-organic framework. Chem. Commun. 2020, 56, 8241–8244. [Google Scholar] [CrossRef]
- Trenholme, W.J.F.; Kolokolov, D.I.; Bound, M.; Argent, S.P.; Gould, J.A.; Li, J.; Barnett, S.A.; Blake, A.J.; Stepanov, A.G.; Besley, E.; et al. Selective Gas Uptake and Rotational Dynamics in a (3,24)-Connected Metal-Organic Framework Material. J. Am. Chem. Soc. 2021, 143, 3348–3358. [Google Scholar] [CrossRef]
- Ji, G.-J.; Xiang, T.; Zhou, X.-Q.; Chen, L.; Zhang, Z.-H.; Lu, B.-B.; Zhou, X.-J. Molecular dynamics simulation of adsorption and separation of xylene isomers by Cu-HKUST-1. RSC Adv. 2022, 12, 35290–35299. [Google Scholar] [CrossRef]
- Zheng, X.; Rehman, S.; Zhang, P. Room temperature synthesis of monolithic MIL-100(Fe) in aqueous solution for energy-efficient removal and recovery of aromatic volatile organic compounds. J. Hazard. Mater. 2023, 442, 129998. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, D.I.; Sukhikh, T.S.; Ryadun, A.A.; Matveevskaya, V.V.; Kovalenko, K.A.; Benassi, E.; Fedin, V.P.; Potapov, A.S. A luminescent 2,1,3-benzoxadiazole-decorated zirconium-organic framework as an exceptionally sensitive turn-on sensor for ammonia and aliphatic amines in water. J. Mater. Chem. C 2022, 10, 5567–5575. [Google Scholar] [CrossRef]
- Xia, T.; Jiang, L.; Zhang, J.; Wan, Y.; Yang, Y.; Gan, J.; Cui, Y.; Yang, Z.; Qian, G. A fluorometric metal-organic framework oxygen sensor: From sensitive powder to portable optical fiber device. Microporous Mesoporous Mater. 2020, 305, 110396. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, D.; Huang, Y.; Zhang, J.; Wang, Z.; Yang, D.; Qian, G. Photo-induced electron transfer in a metal-organic framework: A new approach towards a highly sensitive luminescent probe for Fe3+. Chem. Commun. 2019, 55, 11231–11234. [Google Scholar] [CrossRef]
- Zorina-Tikhonova, E.N.; Yambulatov, D.S.; Kiskin, M.A.; Bazhina, E.S.; Nikolaevskii, S.A.; Gogoleva, N.V.; Lutsenko, I.A.; Sidorov, A.A.; Eremenko, I.L. Synthesis and Structure of New Polymeric Lithium Pivalates. Russ. J. Coord. Chem. 2020, 46, 75–80. [Google Scholar] [CrossRef]
- Yashkova, K.A.; Mel’nikov, S.N.; Nikolaevskii, S.A.; Shmelev, M.A.; Sidorov, A.A.; Kiskin, M.A.; Eremenko, I.L. Synthesis and Structure of an Nontrivial Coordination Polymer {[Na2Co(pfb)2(H2O)8](pfb)2}n with Pentafluorobenzoate Anions. J. Struct. Chem. 2021, 62, 1378–1384. [Google Scholar] [CrossRef]
- Kolokolov, F.A.; Kulyasov, A.N.; Magomadova, M.A.; Shapieva, K.K.; Mikhailov, I.E.; Dushenko, G.A.; Panyushkin, V.A. Synthesis and luminescent properties of coordination compounds of europium(III), gadolinium(III), and terbium(III) with para-alkyloxybenzoic acids. Russ. J. Gen. Chem. 2016, 86, 1209–1211. [Google Scholar] [CrossRef]
- Eliseeva, A.A.; Ivanov, D.M.; Novikov, A.S.; Kukushkin, V.Y. Recognition of the π-hole donor ability of iodopentafluorobenzene-a conventional σ-hole donor for crystal engineering involving halogen bonding. CrystEngComm 2019, 21, 616–628. [Google Scholar] [CrossRef]
- Eliseeva, A.A.; Ivanov, D.M.; Novikov, A.S.; Rozhkov, A.V.; Kornyakov, I.V.; Dubovtsev, A.Y.; Kukushkin, V.Y. Hexaiododiplatinate(ii) as a useful supramolecular synthon for halogen bond involving crystal engineering. Dalt. Trans. 2020, 49, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Awwadi, F.F.; Taher, D.; Haddad, S.F.; Turnbull, M.M. Competition between Hydrogen and Halogen Bonding Interactions: Theoretical and Crystallographic Studies. Cryst. Growth Des. 2014, 14, 1961–1971. [Google Scholar] [CrossRef]
- Kalaj, M.; Momeni, M.R.; Bentz, K.C.; Barcus, K.S.; Palomba, J.M.; Paesani, F.; Cohen, S.M. Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. Chem. Commun. 2019, 55, 3481–3484. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dong, M.-M.; Fan, H.-T.; Feng, C.-Q.; Zang, S.-Q.; Wang, L.-Y. Halogen⋯halogen interactions in the assembly of high-dimensional supramolecular coordination polymers based on 3,5-diiodobenzoic acid. Cryst. Growth Des. 2014, 14, 6325–6336. [Google Scholar] [CrossRef]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef]
- Mullaney, B.R.; Thompson, A.L.; Beer, P.D. An All-Halogen Bonding Rotaxane for Selective Sensing of Halides in Aqueous Media. Angew. Chem. Int. Ed. 2014, 53, 11458–11462. [Google Scholar] [CrossRef] [PubMed]
- Hein, R.; Borissov, A.; Smith, M.D.; Beer, P.D.; Davis, J.J. A halogen-bonding foldamer molecular film for selective reagentless anion sensing in water. Chem. Commun. 2019, 55, 4849–4852. [Google Scholar] [CrossRef] [PubMed]
- Bunchuay, T.; Docker, A.; White, N.G.; Beer, P.D. A new halogen bonding 1,2-iodo-triazolium-triazole benzene motif for anion recognition. Polyhedron 2021, 209, 115482. [Google Scholar] [CrossRef]
- Bunchuay, T.; Boonpalit, K.; Docker, A.; Ruengsuk, A.; Tantirungrotechai, J.; Sukwattanasinitt, M.; Surawatanawong, P.; Beer, P.D. Charge neutral halogen bonding tetradentate-iodotriazole macrocycles capable of anion recognition and sensing in highly competitive aqueous media. Chem. Commun. 2021, 57, 11976–11979. [Google Scholar] [CrossRef]
- Novikov, A.S.; Sakhapov, I.F.; Zaguzin, A.S.; Fedin, V.P.; Adonin, S.A. Halogen Bond in Porous Materials: Rational Selection of Building Blocks. J. Struct. Chem. 2022, 63, 1880–1886. [Google Scholar] [CrossRef]
- Lee, D.A.; Peloquin, D.M.; Yapi, E.W.; McMinn, L.A.; Merkert, J.W.; Donovan-Merkert, B.T.; Vitallo, A.A.; Peterson, A.R.; Jones, D.S.; Ceccarelli, C.; et al. “Tetramethylsilanoviologen”: Synthesis, characterization, and hydrolysis of a Silolodipyridinium ion. Polyhedron 2017, 133, 358–363. [Google Scholar] [CrossRef]
- Richard, J.; Joseph, J.; Wang, C.; Ciesielski, A.; Weiss, J.; Samorì, P.; Mamane, V.; Wytko, J.A. Functionalized 4,4′-Bipyridines: Synthesis and 2D Organization on Highly Oriented Pyrolytic Graphite. J. Org. Chem. 2021, 86, 3356–3366. [Google Scholar] [CrossRef]
- Aubert, E.; Abboud, M.; Doudouh, A.; Durand, P.; Peluso, P.; Ligresti, A.; Vigolo, B.; Cossu, S.; Pale, P.; Mamane, V. Silver(i) coordination polymers with 3,3′,5,5′-tetrasubstituted 4,4′-bipyridine ligands: Towards new porous chiral materials. RSC Adv. 2017, 7, 7358–7367. [Google Scholar] [CrossRef]
- Abboud, M.; Mamane, V.; Aubert, E.; Lecomte, C.; Fort, Y. Synthesis of polyhalogenated 4,4′-bipyridines via a simple dimerization procedure. J. Org. Chem. 2010, 75, 3224–3231. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Mckinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.S.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii of Metals in Covalent Compounds. J. Phys. Chem. 1966, 70, 3006–3007. [Google Scholar] [CrossRef]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals radü for the whole main group. J. Phys. Chem. A 2009, 113, 5806–5812. [Google Scholar] [CrossRef] [PubMed]
- Mamane, V.; Aubert, E.; Peluso, P.; Cossu, S. Synthesis, resolution, and absolute configuration of chiral 4,4′-bipyridines. J. Org. Chem. 2012, 77, 2579–2583. [Google Scholar] [CrossRef]
- Mamane, V.; Peluso, P.; Aubert, E.; Cossu, S.; Pale, P. Chiral Hexahalogenated 4,4′-Bipyridines. J. Org. Chem. 2016, 81, 4576–4587. [Google Scholar] [CrossRef]
- Felloni, M.; Blake, A.J.; Champness, N.R.; Hubberstey, P.; Wilson, C.; Schröder, M. Supramolecular interactions in 4,4′-bipyridine cobalt(II) nitrate networks. J. Supramol. Chem. 2002, 2, 163–174. [Google Scholar] [CrossRef]
- Mauger-Sonnek, K.; Streicher, L.K.; Lamp, O.P.; Ellern, A.; Weeks, C.L. Structure control and sorption properties of porous coordination polymers prepared from M(NO3)2 and 4,4′-bipyridine (M = Co2+, Ni2+). Inorg. Chim. Acta 2014, 418, 73–83. [Google Scholar] [CrossRef]
- Matsia, S.; Menelaou, M.; Hatzidimitriou, A.; Tangoulis, V.; Lalioti, N.; Ioannidis, N.; Blömer, L.; Kersting, B.; Salifoglou, A. Temperature-Sensitive Structural Speciation of Cobalt-Iminodialcohol-(N,N’-Aromatic Chelator) Systems: Lattice Architecture and Spectrochemical Properties. Eur. J. Inorg. Chem. 2020, 2020, 2919–2940. [Google Scholar] [CrossRef]
- Halder, G.J.; Kepert, C.J. In situ single-crystal X-ray diffraction studies of desorption and sorption in a flexible nanoporous molecular framework material. J. Am. Chem. Soc. 2005, 127, 7891–7900. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. 1997, 36, 1725–1727. [Google Scholar] [CrossRef]
- Bartashevich, E.V.; Tsirelson, V.G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181–1203. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
Contact * | ρ(r) | ∇2ρ(r) | λ2 | Hb | V(r) | G(r) | ELF | Eint ** |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
Br⋯N 3.088 Å | 0.012 | 0.040 | −0.012 | 0.002 | −0.007 | 0.009 | 0.048 | 2.5 |
Br⋯N 3.150 Å | 0.011 | 0.036 | −0.011 | 0.002 | −0.006 | 0.008 | 0.046 | 2.2 |
Br⋯N 3.160 Å | 0.011 | 0.034 | −0.011 | 0.001 | −0.006 | 0.007 | 0.041 | 2.2 |
Br⋯Br 3.459 Å | 0.010 | 0.032 | −0.010 | 0.001 | −0.005 | 0.006 | 0.040 | 1.8 |
2 | ||||||||
Br⋯O 3.146 Å | 0.009 | 0.031 | −0.009 | 0.002 | −0.005 | 0.007 | 0.024 | 1.8 |
Br⋯O 3.290 Å | 0.007 | 0.024 | −0.007 | 0.001 | −0.004 | 0.005 | 0.017 | 1.5 |
Structure | Contributions of Different Interatomic Contacts to the Hirshfeld Surfaces |
---|---|
1 | Br–H 34.2%, Br–Br 17.6%, N–H 11.1%, Br–C 10.9%, Br–N 8.3%, C–H 7.1%, H–H 6.3%, N–C 2.5%, C–C 1.9% |
2 | Br–H 31.2%, O–H 23.3%, Br–O 11.6%, H–H 9.7%, Br–Br 7.0%, Br–C 5.4%, C–H 3.0%, O–C 2.3%, Br–N 1.9%, O–N 1.4%, Co–N 1.3%, N–H 1.1%, O–O 0.5%, Co–H 0.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakhapov, I.F.; Zagidullin, A.A.; Dobrynin, A.B.; Litvinov, I.A.; Yakhvarov, D.G.; Bondarenko, M.A.; Novikov, A.S.; Fedin, V.P.; Adonin, S.A. Crystal Structures of 3,3′,5,5′-Tetrabromo-4,4′-bipyridine and Co(II) Coordination Polymer Based Thereon. Crystals 2023, 13, 704. https://doi.org/10.3390/cryst13040704
Sakhapov IF, Zagidullin AA, Dobrynin AB, Litvinov IA, Yakhvarov DG, Bondarenko MA, Novikov AS, Fedin VP, Adonin SA. Crystal Structures of 3,3′,5,5′-Tetrabromo-4,4′-bipyridine and Co(II) Coordination Polymer Based Thereon. Crystals. 2023; 13(4):704. https://doi.org/10.3390/cryst13040704
Chicago/Turabian StyleSakhapov, Ilyas F., Almaz A. Zagidullin, Alexey B. Dobrynin, Igor A. Litvinov, Dmitry G. Yakhvarov, Mikhail A. Bondarenko, Alexander S. Novikov, Vladimir P. Fedin, and Sergey A. Adonin. 2023. "Crystal Structures of 3,3′,5,5′-Tetrabromo-4,4′-bipyridine and Co(II) Coordination Polymer Based Thereon" Crystals 13, no. 4: 704. https://doi.org/10.3390/cryst13040704
APA StyleSakhapov, I. F., Zagidullin, A. A., Dobrynin, A. B., Litvinov, I. A., Yakhvarov, D. G., Bondarenko, M. A., Novikov, A. S., Fedin, V. P., & Adonin, S. A. (2023). Crystal Structures of 3,3′,5,5′-Tetrabromo-4,4′-bipyridine and Co(II) Coordination Polymer Based Thereon. Crystals, 13(4), 704. https://doi.org/10.3390/cryst13040704