A Phenomenological Study of Chromium Impurity Effects on Lattice Microstrains of SnO2 Nanoparticles Prepared Using Sol–Gel Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Tin Oxide Nanoparticles Using the Sol–Gel Technique
2.2. Synthesis of Cr-Doped SnO2 Nanoparticles Using the Sol–Gel Technique
2.3. Characterization
2.4. Quantitative Analysis of XRD Data
2.4.1. Scherrer Method
2.4.2. Williamson–Hall Method
2.4.3. Halder–Wagner Method
3. Results and Discussion
3.1. Characterization of Pure SnO2 Nanoparticles
3.2. Characterization of Cr-Doped SnO2 Nanoparticles
3.2.1. The XRD Analysis
3.2.2. Determination of Crystallite Size and Microstrain
3.2.3. Morphology Analysis
3.2.4. FTIR Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dolatyari, M.; Jafari, A.; Rostami, A.; Klein, A. Transparent Display using a quasi-array of Si-SiO2 Core-Shell Nanoparticles. Sci. Rep. 2019, 9, 2293. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mamta; Kumari, R.; Singh, V.N. SnO2-based NO2 gas sensor with outstanding sensing performance at room temperature. Micromachines 2023, 14, 728. [Google Scholar] [CrossRef]
- Lisnic, P.; Hrostea, L.; Leonti, L.; Girtan, M. Fluorine-doped SnO2 thin films in solar cell applications. Morphological, optical and electrical properties. Arch. Metall. Mater. 2023, 68, 8. [Google Scholar]
- Rangraz, Y.; Vahdat, S.M.; Khaksar, S. SnO2 nanoparticles: A recyclable and heterogeneous catalyst for Pechmann condensation of coumarins and Knoevenagel condensation–Michael addition of biscoumarins. Heliyon 2023, 9, e15135. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, X.; Yao, R.; Luo, D.; Liu, X.; Zou, W.; Guo, C.; Xu, Z.; Ning, H.; Peng, J. Research and progress of transparent, flexible tin oxide ultraviolet photodetector. Crystals 2021, 11, 1479. [Google Scholar] [CrossRef]
- Park, J.-S.; Oh, Y.J.; Kim, J.H.; Kang, Y.C. Porous nanofibers comprised of hollow SnO2 nanoplate building blocks for high-performance lithium ion battery anode. Mater. Charact. 2020, 161, 110099. [Google Scholar] [CrossRef]
- Din, S.U.; Kiani, S.H.; Haq, S.; Ahmad, P.; Khandaker, M.U.; Faruque, M.R.I.; Idris, A.M.; Sayyed, M.I. Bio-synthesized tin oxide nanoparticles: Structural, optical, and biological studies. Crystals 2022, 12, 614. [Google Scholar] [CrossRef]
- Drzymała, E.; Gruzeł, G.; Depciuch, J.; Budziak, A.; Kowal, A.; Parlinska-Wojtan, M. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes. J. Phys. Chem. Solids 2017, 107, 100–107. [Google Scholar] [CrossRef]
- Feng, C.; Li, X.; Wang, C.; Sun, Y.; Zheng, J.; Lu, G. Facile synthesis benzene sensor based on V2O5-doped SnO2 nanofibers. RSC Adv. 2014, 4, 47549–47555. [Google Scholar] [CrossRef]
- Ghodsi, F.E.; Mazloom, J. Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol–gel process. Appl. Phys. A 2012, 108, 693–700. [Google Scholar] [CrossRef]
- Mazloom, J.; Ghodsi, F.E. Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2:Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 2013, 48, 1468–1476. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.; Huang, R.; Zhang, Q.; Le, T.-T.; Cheng, E.; Hu, Z.; Chen, Z. Convenient fabrication of Ni-doped SnO2 quantum dots with improved photodegradation performance for Rhodamine B. J. Alloys Compd. 2019, 788, 929–935. [Google Scholar] [CrossRef]
- Ali Baig, A.B.; Rathinam, V.; Ramya, V. Synthesis and Investigation of Fe doped SnO2 Nanoparticles for Improved Photocatalytic Activity under Visible Light and Antibacterial performances. Mater. Technol. 2021, 36, 623–635. [Google Scholar] [CrossRef]
- Ching-Prado, E.; Watson, A.; Miranda, H. Optical and electrical properties of fluorine doped tin oxide thin film. J. Mater. Sci. Mater. Electron. 2018, 29, 15299–15306. [Google Scholar] [CrossRef]
- Li, W.; Ding, C.; Li, J.; Ren, Q.; Bai, G.; Xu, J. Sensing mechanism of Sb, S doped SnO2 (1 1 0) surface for CO. Appl. Surf. Sci. 2020, 502, 144140. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Huang, Y.; Wang, X.; Guo, J.; Yang, J.; Zhao, H. Structural and electronic properties of SnO2 doped with non-metal elements. Beilstein J. Nanotechnol. 2020, 11, 1321–1328. [Google Scholar] [CrossRef]
- Bose, A.C.; Kalpana, D.; Thangadurai, P.; Ramasamy, S. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. J. Power Sources 2002, 107, 138–141. [Google Scholar] [CrossRef]
- Divya, J.; Pramothkumar, A.; Joshua Gnanamuthu, S.; Bernice Victoria, D.C.; Jobe Prabakar, P.C. Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Physica B 2020, 588, 412169. [Google Scholar] [CrossRef]
- Soo, M.T.; Kawamura, G.; Muto, H.; Matsuda, A.; Lockman, Z.; Cheong, K.Y. Design of hierarchically meso–macroporous tetragonal ZrO2 thin films with tunable thickness by spin-coating via sol–gel template route. Microporous Mesoporous Mater. 2013, 167, 198–206. [Google Scholar] [CrossRef]
- Motevalizadeh, L.; Heidary, Z.; Abrishami, M.E. Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. Bull. Mater. Sci. 2014, 37, 397–405. [Google Scholar] [CrossRef]
- Vallejos, S.; Selina, S.; Annanouch, F.E.; Gràcia, I.; Llobet, E.; Blackman, C. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Sci. Rep. 2016, 6, 28464. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Yin, X.; Chen, P.; Liu, J.; Yang, C.; Que, W.; Wang, G. Solvothermal synthesis of highly crystalline SnO2 nanoparticles for flexible perovskite solar cells application. Mater. Lett. 2019, 234, 311–314. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045013. [Google Scholar] [CrossRef]
- Tan, W.K.; Muto, H.; Kawamura, G.; Lockman, Z.; Matsuda, A. Nanomaterial fabrication through the modification of sol–gel derived coatings. Nanomaterials 2021, 11, 181. [Google Scholar] [CrossRef]
- Muhammed Shafi, P.; Chandra Bose, A. Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 2015, 5, 057137. [Google Scholar] [CrossRef]
- Mote, V.D.; Purushotham, Y.; Dole, B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phy. 2012, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phy. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Al-Shomar, S.M.; Akl, A.A.; Mansour, D.; Hedhili, F.; Aslam, A.; Shaaban, E.R.; Mahmoud, S.A. Influence of Mo+2 ion concentration on crystallization, microstructure, crystal imperfection and morphology of WO3 sprayed thin films. Mater. Res. Express 2022, 9, 096404. [Google Scholar] [CrossRef]
- Khorsand Zak, A.; Abd Majid, W.H.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar] [CrossRef]
- Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R. Characterization of tin dioxide nanoparticles synthesized by oxidation. Cerâmica 2015, 61, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Bumajdad, A.; Al-Ghareeb, S.; Madkour, M.; Sagheer, F.A. Non-noble, efficient catalyst of unsupported α-Cr2O3 nanoparticles for low temperature CO Oxidation. Sci. Rep. 2017, 7, 14788. [Google Scholar] [CrossRef] [Green Version]
Calcination Temperature (°C) | Mass after Heating (g) | Relative Mass Reduction (%) |
---|---|---|
350 | 3.11 | 22.25 |
450 | 2.83 | 29.25 |
550 | 2.57 | 35.75 |
Compound | Scherrer D (nm) | Williamson–Hall Method | Halder–Wagner Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UDM | USDM | UDEDM | ||||||||||
D (nm) | ε × 10−3 | D (nm) | ε × 10−3 | σ (MPa) | D (nm) | ε × 10−3 | σ (MPa) | u (kJ.m3) | D (nm) | ε × 10−3 | ||
SnO2:Cr 0% | 26.75 | 31.37 | 0.66 | 31.37 | 0.73 | 85.90 | 31.37 | 0.66 | 78.06 | 25.76 | 32.20 | 6.0 |
SnO2:Cr 5% | 28.85 | 33.65 | 0.59 | 33.69 | 0.59 | 69.47 | 33.69 | 0.59 | 69.50 | 20.45 | 69.33 | 4.9 |
SnO2:Cr 8% | 28.22 | 22.78 | −0.92 | 22.78 | −0.92 | −108.2 | 22.78 | −0.92 | −108.56 | 49.57 | 28.25 | −2.8 |
SnO2:Cr 10% | 33.68 | 26.45 | −0.86 | 26.45 | −0.86 | −101.8 | 26.45 | −0.86 | −101.79 | 43.89 | 32.92 | −2.8 |
SnO2:Cr 15% | 31.88 | 33.59 | 0.19 | 33.59 | 0.19 | 21.88 | 33.59 | 0.19 | 21.95 | 2.03 | 35.04 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motevalizadeh, L.; Tahani, M. A Phenomenological Study of Chromium Impurity Effects on Lattice Microstrains of SnO2 Nanoparticles Prepared Using Sol–Gel Technique. Crystals 2023, 13, 919. https://doi.org/10.3390/cryst13060919
Motevalizadeh L, Tahani M. A Phenomenological Study of Chromium Impurity Effects on Lattice Microstrains of SnO2 Nanoparticles Prepared Using Sol–Gel Technique. Crystals. 2023; 13(6):919. https://doi.org/10.3390/cryst13060919
Chicago/Turabian StyleMotevalizadeh, Leili, and Masoud Tahani. 2023. "A Phenomenological Study of Chromium Impurity Effects on Lattice Microstrains of SnO2 Nanoparticles Prepared Using Sol–Gel Technique" Crystals 13, no. 6: 919. https://doi.org/10.3390/cryst13060919
APA StyleMotevalizadeh, L., & Tahani, M. (2023). A Phenomenological Study of Chromium Impurity Effects on Lattice Microstrains of SnO2 Nanoparticles Prepared Using Sol–Gel Technique. Crystals, 13(6), 919. https://doi.org/10.3390/cryst13060919