Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron
Abstract
:1. Introduction
2. Experimental Data
3. Results
3.1. Magnesium and Its Alloys
3.2. Aluminum and Its Alloys
3.3. Copper and Its Alloys
3.4. Iron
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Material | Process | Grain Size (µm) | (MPa) | Dislocation Density (m−2) | Ref. |
---|---|---|---|---|---|
Mg (99.9%) | Anneal | 1600 | 94 | [46] | |
Mg (99.8%) | As-Cast | 1000 | 104 | [57] | |
Mg (99.9%) | HPT | 2.7 | 117 | [46] | |
Mg (99.9%) | HPT | 1 | 114 | [58] | |
Mg (99.8%) | HPT | 0.6 | 179 | [57] | |
Pure Mg | HPT | 1.46 | 147 | [59] | |
Mg-8Li (wt%) | HPT | 0.5 | 196 | [60] | |
Mg-9Al (wt%) | HPT | 0.15 | 353 | [61] | |
Mg-0.41Dy (wt%) | HPT | 0.75 | 124 | 3.5 × 1014 | [62] |
Mg-3.4Zn (at%) | HPT | 0.14 | 418 | [63] | |
Mg-4.3Zn-0.7Y (at%) | HPT | 0.15 | 425 | 5 × 1014 | [64] |
Mg-1Zn-0.13Ca (wt%) | HPT | 0.15 | 327 | [65] | |
Mg-8Gd-3Y-0.4Zr (wt%) | HPT | 0.08 | 412 | [66] | |
Mg-8Gd-3.8Y-1Zn-0.4Zr (wt%) | HPT | 0.048 | 412 | 4.65 × 1014 | [67] |
AM60 | HPT | 0.23 | 366 | 11 × 1014 | [68] |
AZ31 | HPT | 0.5 | 287 | [69] | |
AZ31 | HPT | 0.11 | 408 | [70] | |
AZ31 | HPT | 0.175 | 318 | 5.7 × 1014 | [71] |
AZ61 | HPT | 0.52 | 310 | [72] | |
AZ61 | HPT | 0.37 | 343 | [72] | |
AZ61 | HPT | 0.23 | 359 | [72] | |
AZ61 | HPT | 0.22 | 359 | [72] | |
AZ61 | HPT | 0.11 | 359 | [72] | |
AZ80 | HPT | 0.2 | 392 | [73] | |
AZ80 | HPT | 0.1 | 408 | [74] | |
AZ91 | HPT | 0.18 | 359 | 1.1 × 1014 | [75] |
AZ91 | HPT | 0.25 | 300 | 0.6 × 1014 | [75] |
AZ91 | HPT | 0.035 | 451 | 5 × 1014 | [75] |
EZ33A | HPT | 0.24 | 297 | [76] | |
EZ33A | HPT | 0.127 | 310 | [76] | |
EZ33A | HPT | 0.13 | 313 | [76] | |
ZKX600 | HPT | 0.1 | 408 | [77] |
Material | Process | Grain Size (µm) | (MPa) | Dislocation Density (m−2) | Ref. |
---|---|---|---|---|---|
Al (99.9999%) | Anneal | >1000 | 60.5 | [47] | |
Al (99.999%) | Anneal | >1000 | 61.1 | [47] | |
Al (99.99%) | Anneal | 620 | 63.1 | [47] | |
Al (99.7%) | Anneal | 300 | 69.9 | [78] | |
Al (99.5%) | Anneal | 170 | 72.0 | [47] | |
Al (99%) | Anneal | 160 | 92.9 | [47] | |
Al (99.9999%) | HPT | 20 | 53 | [47] | |
Al (99.999%) | HPT | 4.8 | 89 | [47] | |
Al (99.99%) | HPT | 1.3 | 110 | [47] | |
Al 99.7% | HPT | 0.8 | 203.2 | [78] | |
Al (99.5%) | HPT | 0.5 | 177 | 2–4 × 1014 | [79] |
Al (99.5%) | HPT | 0.6 | 173 | [47] | |
Al (99.5%) | HPT | 0.504 | 197 | 0.69 × 1013 | [80] |
Al (99%) | HPT | 0.4 | 285 | [47] | |
Al (99.999%) | ECAP | 15 | 72 | [81] | |
Al (99.999%) | ECAP | 1.3 | 115 | [82] | |
Al (99.99%) | ECAP | 1.3 | 135 | [83] | |
Al (99.99%) | ECAP | 2 | 98 | [84] | |
Al (99.99%) | ECAP | 1 | 120 | 1.8 × 1014 | [85] |
Al (99%) | ECAP | 0.68 | 185 | [86] | |
Al (99.99%) | ARB | 1.1 | 97 | 0.12 × 1014 | [87] |
Al (99.99%) | ARB | 0.69 | 120 | 0.12 × 1014 | [88] |
Al (99.99%) | ARB | 0.69 | 97 | 0.123 × 1014 | [26] |
A1 (99.5%) | ARB | 0.6 | 260 | 1.33 × 1014 | [89] |
Al (99%) | ARB | 0.33 | 290 | [90] | |
Al (99%) | ARB | 0.28 | 310 | 1.33 × 1014 | [88] |
Al (99%) | ARB | 0.26 | 302 | [91] | |
Al-1.1Mg (at%) | HPT | 0.39 | 415 | [92,93] | |
Al-3.3Mg (at%) | HPT | 0.2 | 600 | [92,93] | |
Al-5.5Mg (at%) | HPT | 0.19 | 660 | [92,93] | |
Al-8.8Mg (at%) | HPT | 0.14 | 735 | [92,93] | |
Al-3Mg-0.2Sc (wt%) | HPT | 0.15 | 585 | [94] | |
Al-3Mg (wt%) | ECAP | 0.2 | 390 | 27 × 1014 | [85] |
Al-3Mg-0.2Sc (wt%) | HPT | 0.15 | 565.3 | [95] | |
Al-5.9Mg-0.3Sc-0.18Zr (wt%) | HPT | 0.045 | 700 | [96] | |
Al-Ca | HPT | 0.025 | 915.32 | [97] | |
Al-1.7Cu (at%) | HPT | 0.207 | 670 | [92,93] | |
Al-3Cu-1Li (wt%) | HPT | 0.13 | 700 | 27.8 × 1014 | [98] |
Al-2Fe (wt%) | HPT | 0.3 | 440 | <15 × 1014 | [99] |
Al-2Fe (wt%) | HPT | 0.15 | 590 | <26 × 1014 | [99] |
Al-2Fe (wt%) | HPT | 0.14 | 655 | <33 × 1014 | [99] |
Al-1.3Ag (at%) | HPT | 0.5 | 200 | [92,93] | |
Al-3.0Ag (at%) | HPT | 0.367 | 245 | [92,93] | |
Al-5.9Ag (at%) | HPT | 0.278 | 370 | [92,93] | |
Al-5Zr (wt%) | HPT | 0.073 | 915.32 | >1 × 1014 | [100] |
Al-3.1La-5.4Ce | HPT | 0.040 | 663.3 | 1.3 × 1014 | [101] |
Al-3.1La-5.4Ce | HPT | 0.08 | 712.35 | [101] | |
A1570 | HPT | 0.097 | 890 | [13] | |
A2024 | ECAP | 0.3 | 325 | [86] | |
A2024 | HPT | 0.13 | 817.25 | 55 × 1014 | [102] |
A2024 | HPT | 0.16 | 898.975 | 10 × 1014 | [102] |
A2024 | HPT | 0.24 | 817.25 | 8 × 1014 | [103] |
A2024 | HPT | 0.255 | 849.94 | 5 × 1014 | [103] |
A2024 | HPT | 0.24 | 817.25 | [104] | |
A2024 | HPT | 0.177 | 621.11 | 2.7 × 1014 | [104] |
A2024 | HPT | 0.145 | 784.56 | 3.3 × 1014 | [104] |
A2024 | HPT | 0.157 | 849.94 | [104] | |
AA2024 | HPT | 0.157 | 490.35 | 3.2 × 1014 | [105] |
AA2024 | HPT | 0.169 | 686.49 | 2.2 × 1014 | [105] |
A6060 | HPT | 0.18 | 525 | [106] | |
A6061 | HPT | 0.2 | 510 | 2.6 × 1014 | [107] |
A6061 | HPT | 0.17 | 430 | [108] | |
Al6061 | HPT | 0.45 | 522.8 | [109] | |
Al6061 | HPT | 0.746 | 431.3 | [109] | |
Al6061 | HPT | 0.25 | 565.3 | [110] | |
AA7075 | HPT | 0.11 | 915.32 | [50] | |
AA7075 | HPT | 0.17 | 621.1 | [50] | |
Al-0.2Zr (wt%) | ECAP | 0.63 | 160 | [111] | |
A3004 | ECAP | 0.29 | 370 | [86] | |
A5083 | ECAP | 0.225 | 420 | [86] | |
A6061 | ECAP | 0.4 | 380 | [112] | |
A6061 | ECAP | 0.29 | 280 | [86] | |
A6061 | ECAP | 0.28 | 327 | [83] | |
A6063 | ECAP | 0.5 | 255 | [106] | |
A7075 | ECAP | 0.21 | 480 | [86] | |
A2024 | ARB | 0.35 | 425 | [113] | |
A6061 | ARB | 0.24 | 370 | [114] | |
A6061 | ARB | 0.31 | 363 | [115] | |
A8011 | ARB | 0.7 | 180 | [116] |
Material | Process | Grain Size (µm) | (MPa) | Dislocation Density (m−2) | Ref. |
---|---|---|---|---|---|
Cu (99.99%) | Anneal | 150 | 156 | [117] | |
Cu (99.99%) | HPT + Anneal | 2.15 | 268 | [117] | |
Cu (99.99%) | HPT + Anneal | 2.5 | 245 | [117] | |
Cu (99.99%) | HPT | 0.37 | 433 | [92,93] | |
Cu (99.99%) | HPT | 0.25 | 500 | 43.4 × 1014 | [118] |
Cu (99.99%) | HPT | 0.3 | 470 | [119] | |
Cu (99.99%) | HPT | 0.225 | 392 | [120] | |
Cu (99.99%) | HPT | 0.273 | 474 | 0.39 × 1014 | [80] |
Cu (99.98%) | HPT | 0.2 | 449 | [121] | |
Cu (99.98%) | HPT | 0.16 | 566 | 37 × 1014 | [122] |
Cu (99.97%) | HPT | 0.14 | 457 | [123] | |
Cu (99.97%) | HPT | 0.12 | 461 | [124] | |
Cu (99.96%) | HPT | 0.14 | 426 | [125] | |
Cu (99.95%) | HPT | 0.25 | 506 | 70 × 1014 | [126] |
Cu (99.9%) | HPT | 0.76 | 490 | [127] | |
Cu (99.9%) | HPT | 0.2 | 640 | [119] | |
Cu (99.9%) | HPT | 0.65 | 428 | [128] | |
Cu (99.9%) | HPT | 0.35 | 461 | [128] | |
Cu (99.87%) | HPT | 0.537 | 418 | 1.48 × 1014 | [129] |
Cu (99.87%) | HPT | 0.37 | 483 | 8.6 × 1014 | [130] |
Cu (99.98%) | ECAP + HPT | 0.225 | 392 | [121] | |
Cu (99.99%) | ECAP | 0.3 | 431 | [117] | |
Cu (99.98%) | ECAP | 0.215 | 433 | [122] | |
Cu (99.98%) | ECAP | 0.25 | 510 | 4.09 × 1014 | [131] |
Cu (99.95%) | ECAP | 0.44 | 408 | [132] | |
Cu (99.95%) | ECAP | 0.2 | 497 | [133] | |
Cu (99.9%) | ECAP | 0.2 | 451 | [134] | |
Cu (99.9%) | ECAP | 0.3 | 500 | [119] | |
Cu-4.6Al (at%) | HPT | 0.187 | 700 | [92,93] | |
Cu-11Al (at%) | HPT | 0.118 | 836 | [92,93] | |
Cu-15Al (at%) | HPT | 0.073 | 893 | [92,93] | |
Cu-16Al (at%) | HPT | 0.03 | 843 | [124] | |
Cu-1.49Si (wt%) | HPT | 0.15 | 597 | 5 × 1014 | [135] |
Cu-9.7Zn (at%) | HPT | 0.113 | 743 | [92,93] | |
Cu-19.5Zn (at%) | HPT | 0.093 | 800 | [92,93] | |
Cu-29.4Zn (at%) | HPT | 0.075 | 830 | [92,93] | |
Cu-30Zn (wt%) | HPT | 0.064 | 810 | 5.67 × 1014 | [80] |
Cu-0.17Zr (wt%) | ECAP | 0.37 | 457 | [136] |
Material | Process | Grain Size (µm) | (MPa) | Dislocation Density (m−2) | Ref. |
---|---|---|---|---|---|
Fe (99.95%) | Anneal | 500 | 205 | [137] | |
Fe (99.96%) | None | 140 | 202 | [138] | |
Fe (99.94%) | None | 33 | 513 | [138] | |
Fe (99.88%) | None | 10 | 398 | [138] | |
Fe (99.9988%) | HPT | 0.35 | 1016 | [139] | |
Fe (99.99%) | HPT | 0.2 | 1144 | [140] | |
Fe (99.99%) | HPT | 0.265 | 1242 | [141] | |
Fe (99.97%) | HPT | 0.06 | 1900 | [142] | |
Fe (99.96%) | HPT | 0.35 | 1020 | [138] | |
Fe (99.96%) | HPT | 0.226 | 1184 | 0.97 × 1014 | [80] |
Fe (99.96%) | HPT | 0.2 | 1006 | [14] | |
Fe (99.95%) | HPT | 0.195 | 1177 | [143] | |
Fe (99.95%) | HPT | 0.19 | 1170 | [137] | |
Fe (99.95%) | HPT | 0.3 | 1200 | [144] | |
Fe (99.94%) | HPT | 0.34 | 1373 | [138] | |
Fe (99.88%) | HPT | 0.23 | 1553 | [138] | |
Fe (99.88%) | HPT | 0.24 | 1536 | [138] | |
Fe (97.78%) | HPT | 0.11 | 1994 | [138] | |
Pure Iron | HPT | 0.39 | 1200 | [145] | |
Pure Iron | HPT | 0.15 | 1933 | [146] | |
Armco Iron | HPT | 0.1 | 1667 | [142] | |
Armco Iron | HPT | 0.134 | 1406 | [147] | |
Armco Iron | HPT | 0.1 | 1533 | [148] | |
Armco Iron | HPT | 0.25 | 1000 | [149] | |
Armco Iron | HPT | 0.3 | 1383 | [150] | |
Armco Iron | HPT | 0.2 | 1389 | [151] | |
Fe-0.01C (wt%) | HPT | 0.125 | 1308 | 22 × 1014 | [152] |
Fe-0.02C (wt%) | HPT | 0.33 | 1400 | [153] | |
Fe-0.03C (wt%) | HPT | 0.1 | 1800 | [154] | |
Fe C | Milling + HPT | 0.023 | 3662 | [155] | |
Fe C | Milling + HPT | 0.02 | 3924 | [155] | |
Fe (99.95%) | ECAP | 0.3 | 850 | [156] | |
Armco Iron | ECAP | 0.17 | 1031 | [157] | |
Fe (97.78%) | Milling | 0.026 | 2697 | [138] |
References
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 2016, 652, 325–352. [Google Scholar] [CrossRef]
- Segal, V.M.; Reznikov, V.I.; Drobyshevskiy, A.E.; Kopylov, V.I. Plastic working of metals by simple shear. Russ. Metall. 1981, 1, 99–105. [Google Scholar]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Hausöl, T.; Maier, V.; Schmidt, C.W.; Winkler, M.; Höppel, H.W.; Göken, M. Tailoring materials properties by accumulative roll bonding. Adv. Eng. Mater. 2010, 12, 740–746. [Google Scholar] [CrossRef]
- Čížek, J.; Janeček, M.; Vlasák, T.; Smola, B.; Melikhova, O.; Islamgaliev, R.K.; Dobatkin, S.V. The development of vacancies during severe plastic deformation. Mater. Trans. 2019, 60, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Gubicza, J. Lattice defects and their influence on the mechanical properties of bulk materials processed by severe plastic deformation. Mater. Trans. 2019, 60, 1230–1242. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, M.; Horita, Z.; Nemoto, M.; Valiev, R.Z.; Langdon, T.G. Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size. Acta Mater. 1996, 44, 4619–4629. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Enikeev, N.A.; Murashkin, M.Y.; Kazykhanov, V.U.; Sauvage, X. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 2010, 63, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Horita, Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 2011, 59, 6831–6836. [Google Scholar] [CrossRef]
- Sauvage, X.; Duchaussoy, A.; Zaher, G. Strain induced segregations in severely deformed materials. Mater. Trans. 2019, 60, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Wilde, G.; Divinski, S. Grain boundaries and diffusion phenomena in severely deformed materials. Mater. Trans. 2019, 60, 1302–1315. [Google Scholar] [CrossRef] [Green Version]
- Jóni, B.; Schafler, E.; Zehetbauer, M.; Tichy, G.; Ungár, T. Correlation between the microstructure studied by X-ray line profile analysis and the strength of high-pressure-torsion processed Nb and Ta. Acta Mater. 2013, 61, 632–642. [Google Scholar] [CrossRef]
- Starink, M.J.; Cheng, X.C.; Yang, S. Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions. Acta Mater. 2013, 61, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Dieter, G.E. Mechanical Metallurgy; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Hall, E. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 1951, 64, 747–752. [Google Scholar] [CrossRef]
- Petch, N.J. The orientation relationships between cementite and α-iron. Acta Cryst. 1953, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.E.; Hirsch, P.B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 1960, 5, 485–497. [Google Scholar] [CrossRef]
- Starink, M.J. Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals. Mater. Sci. Eng. A 2017, 705, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Chinh, N.Q.; Olasz, D.; Ahmed, A.Q.; Sáfrán, G.; Lendvai, J.; Langdon, T.G. Modification of the Hall-Petch relationship for submicron-grained fcc metals. Mater. Sci. Eng. A 2023, 862, 144419. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, S.W.; Park, J.S.; Bae, D.H. Positive deviation from a Hall-Petch relation in nanocrystalline aluminum. Mater. Trans. 2009, 50, 640–643. [Google Scholar] [CrossRef] [Green Version]
- Kamikawa, N.; Huang, X.; Tsuji, N.; Hansen, N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009, 57, 4198–4208. [Google Scholar] [CrossRef]
- Chokshi, A.H.; Rosen, A.; Karch, J.; Gleiter, H. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Meter. 1989, 23, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Meyers, M.A.; Mishra, A.; Benson, A.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Pande, C.S.; Cooper, K.P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 2009, 54, 689–706. [Google Scholar] [CrossRef]
- Carlton, C.E.; Ferreira, P.J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater. 2007, 55, 3749–3756. [Google Scholar] [CrossRef]
- Padmanabhan, K.A.; Dinda, G.P.; Hahn, H.; Gleiter, H. Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials. Mater. Sci. Eng. A 2007, 452, 462–468. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Kong, Q.P.; Lu, L.; Lu, K. Interface controlled diffusional creep of nanocrystalline pure copper. Scr. Mater. 1999, 41, 755–759. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Szommer, P.; Horita, Z.; Langdon, T.G. Experimental evidence for grain-boundary sliding in ultrafine-rained aluminum processed by severe plastic deformation. Adv. Mater. 2006, 18, 34–39. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, B.Q.; Sui, M.L.; Mao, S.X. Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett. 2008, 92, 011903. [Google Scholar] [CrossRef]
- Fougere, G.E.; Weertman, J.R.; Siegel, R.W.; Kim, S. Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr. Metall. Mater. 1992, 26, 1879–1883. [Google Scholar] [CrossRef]
- Konstantinidis, D.A.; Aifantis, E.C. On the “Anomalous” hardness of nanocrystalline materials. Nanostruct. Mater. 1998, 10, 1111–1118. [Google Scholar] [CrossRef]
- Conrad, H.; Narayan, J. On the grain size softening in nanocrystalline materials. Scr. Meter. 2000, 42, 1025–1030. [Google Scholar] [CrossRef]
- Shen, T.D.; Schwarz, R.B.; Feng, S.; Swadener, J.G.; Huang, J.Y.; Tang, M.; Zhang, J.; Vogel, S.C.; Zhao, Y. Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation. Acta Mater. 2007, 55, 5007–5013. [Google Scholar] [CrossRef]
- Loucif, A.; Figueiredo, R.B.; Baudin, T.; Brisset, F.; Chemam, R.; Langdon, T.G. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2012, 532, 139–145. [Google Scholar] [CrossRef]
- Armstrong, R.W. Hall-Petch description of nanopolycrystalline Cu, Ni and Al strength levels and strain rate sensitivities. Philos. Mag. 2016, 96, 3097–3108. [Google Scholar] [CrossRef]
- Xu, W.; Dávila, L.P. Tensile nanomechanics and the Hall-Petch effect in nanocrystalline aluminium. Mater. Sci. Eng. A 2018, 710, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.M.; Pereira, P.H.R.; Isaac, A.C.; Langdon, T.G.; Figueiredo, R.B. Inverse Hall-Petch behaviour in an AZ91 alloy and in an AZ91-Al2O3 composite consolidated by high-pressure torsion. Adv. Eng. Mater. 2020, 22, 1900894. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Heilmaier, M. Hall-Petch breakdown at elevated temperatures. Mater. Trans. 2014, 55, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Horita, Z. Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater. Sci. Eng. A 2011, 528, 7514–7523. [Google Scholar] [CrossRef]
- Edalati, K.; Cubero-Sesin, J.M.; Alhamidi, A.; Mohamed, I.F. Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion. Mater. Sci. Eng. A 2014, 613, 103–110. [Google Scholar] [CrossRef]
- Ito, Y.; Edalati, K.; Horita, Z. High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship. Mater. Sci. Eng. A 2017, 679, 428–434. [Google Scholar] [CrossRef]
- Edalati, K.; Hashiguchi, Y.; Iwaoka, H.; Matsunaga, H.; Valiev, R.Z.; Horita, Z. Long-time stability of metals after severe plastic deformation: Softening and hardening by self-annealing versus thermal stability. Mater. Sci. Eng. A 2018, 729, 340–348. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Edalati, K.; Langdon, T.G. Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion. Mater. Sci. Eng. A 2022, 835, 142666. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, S.; Trimby, P.W.; Liao, X.; Murashkin, M.Y.; Valiev, R.Z.; Liu, J.; Cairney, J.M.; Ringer, S.P.; Sha, G. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 2019, 162, 19–32. [Google Scholar] [CrossRef]
- Liddicoat, P.V.; Liao, X.Z.; Zhao, Y.; Zhu, Y.; Murashkin, M.Y.; Lavernia, E.J.; Valiev, R.Z.; Ringer, S.P. Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 2010, 1, 63. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Masuda, T.; Arita, M.; Furui, M.; Sauvage, X.; Horita, Z.; Valiev, R.Z. Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci. Rep. 2017, 7, 2662. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z.; Valiev, R.Z. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci. Rep. 2018, 8, 6740. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z. Superior strenth in ultrafine-grained materials processed by SPD processing. Mater. Trans. 2014, 55, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z. Nanostructural design of superstrong metallic materials by severe plastic deformation processing. Microstructures 2023, 3, 2033004. [Google Scholar]
- Tabor, D. The hardness of solids. Rev. Phys. Technol. 1970, 1, 145–179. [Google Scholar] [CrossRef]
- Qiao, X.G.; Zhao, Y.W.; Gan, W.M.; Chen, Y.; Zheng, M.Y.; Wu, K.; Gao, N.; Starink, M.J. Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature. Mater. Sci. Eng. A 2014, 619, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Yamamoto, A.; Horita, Z.; Ishihara, T. High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 2011, 64, 880–883. [Google Scholar] [CrossRef]
- Malheiros, L.R.C.; Figueiredo, R.B.; Langdon, T.G. Processing different magnesium alloys through HPT. Mater. Sci. Forum 2014, 783–786, 2617–2622. [Google Scholar]
- Matsunoshita, H.; Edalati, K.; Furui, M.; Horita, Z. Ultrafine-grained magnesium-lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming. Mater. Sci. Eng. A 2015, 640, 443–448. [Google Scholar] [CrossRef]
- Kai, M.; Horita, Z.; Langdon, T.G. Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2008, 488, 117–124. [Google Scholar] [CrossRef]
- Hanna, A.; Azzeddine, H.; Lachhab, R.; Baudin, T.; Helbert, A.L.; Brisset, F.; Huang, Y.; Bradai, D.; Langdon, T.G. Evaluating the textural and mechanical properties of an Mg-Dy alloy processed by high-pressure torsion. J. Alloys Compd. 2019, 778, 61–71. [Google Scholar] [CrossRef]
- Meng, F.; Rosalie, J.M.; Singh, A.; Somekawa, H.; Tsuchiya, K. Ultrafine grain formation in Mg-Zn alloy by in situ precipitation during high-pressure torsion. Scr. Mater. 2014, 78–79, 57–60. [Google Scholar] [CrossRef]
- Jenei, P.; Gubicza, J.; Yoon, E.Y.; Kim, H.S. X-ray diffraction study on the microstructure of a Mg-Zn-Y alloy consolidated by high-pressure torsion. J. Alloys Compd. 2012, 539, 32–35. [Google Scholar] [CrossRef]
- Kulyasova, O.B.; Islamgaliev, R.K.; Zhao, Y.; Valiev, R.Z. Enhancement of the mechanical properties of an Mg-Zn-Ca alloy using high-pressure torsion. Adv. Eng. Mater. 2015, 17, 1738–1741. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, Y.; Islamgaliev, R.K.; Valiev, R.Z.; Zhu, Y.T. Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion. J. Alloys Compd. 2017, 721, 577–585. [Google Scholar] [CrossRef]
- Sun, W.T.; Qiao, X.G.; Zheng, M.Y.; Xu, C.; Kamado, S.; Zhao, X.J.; Chen, H.W.; Gao, N.; Starink, M.J. Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Acta Mater. 2018, 151, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Khaleghi, A.A.; Akbaripanah, F.; Sabbaghian, M.; Máthis, K.; Minárik, P.; Veselý, J.; El-Tahawy, M.; Gubicza, J. Influence of high-pressure torsion on microstructure, hardness and shear strength of AM60 magnesium alloy. Mater. Sci. Eng. A 2021, 799, 140–158. [Google Scholar] [CrossRef]
- Serre, P.; Figueiredo, R.B.; Gao, N.; Langdon, T.G. Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2011, 528, 3601–3608. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Shirooyeh, M.; Xing, G.; Shan, D.; Guo, B.; Langdon, T.G. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion. J. Mater. Sci. 2015, 50, 7424–7436. [Google Scholar] [CrossRef]
- Stráská, J.; Janeček, M.; Gubicza, J.; Krajňák, T.; Yoon, E.Y.; Kim, H.S. Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion. Mater. Sci. Eng. A 2015, 625, 98–106. [Google Scholar] [CrossRef]
- Harai, Y.; Kai, M.; Kaneko, K.; Horita, Z.; Langdon, T.G. Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion. Mater. Trans. 2008, 49, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Alsubaie, S.A.; Bazarnik, P.; Lewandowska, M.; Huang, Y.; Langdon, T.G. Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. J. Mater. Res. Technol. 2016, 5, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Arpacay, D.; Yi, S.B.; Janeček, M.; Bakkaloglu, A.; Wagner, L. Microstructure evolution during high pressure torsion of AZ80 magnesium alloy. Mater. Sci. Forum 2008, 584–586, 300–305. [Google Scholar]
- Al-Zubaydi, A.S.; Zhilyaev, A.P.; Wang, S.C.; Kucita, P.; Reed, P.A. Evolution of microstructure in AZ91 alloy processed by high-pressure torsion. J. Mater. Sci. 2015, 51, 3380–3389. [Google Scholar] [CrossRef] [Green Version]
- Bryła, K.; Morgiel, J.; Faryna, M.; Edalati, K.; Horita, Z. Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy. Mater. Lett. 2018, 212, 323–326. [Google Scholar] [CrossRef]
- Zheng, R.; Bhattacharjee, T.; Shibata, A.; Sasaki, T.; Hono, K.; Joshi, M.; Tsuji, N. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures. Scr. Mater. 2017, 131, 1–5. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Oh-ishi, K.; Langdon, T.G.; McNelley, T.R. Microstructural evolution in commercial purity aluminum during high-pressure torsion. Mater. Sci. Eng. A 2005, 410–411, 277–280. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, N.; Starink, M.J. Microstructure development and hardening during high pressure torsion of commercially pure aluminium: Strain reversal experiments and a dislocation based model. Mater. Sci. Eng. A 2011, 528, 2581–2591. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Wang, Q.; Enikeev, N.; Peters, L.J.; Zehetbauer, M.J.; Schafler, E. Significance of strain rate in severe plastic deformation on steady-state microstructure and strength. Mater. Sci. Eng. A 2022, 859, 144231. [Google Scholar] [CrossRef]
- Dvorak, J.; Sklenicka, V.; Horita, Z. Microstructural evolution and mechanical properties of high purity aluminium processed by equal-channel angular pressing. Mater. Trans. 2008, 49, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhu, X.; Shi, L.; Shan, D.; Guo, B.; Langdon, T.G. Micro-forming using ultrafine-grained aluminum processed by equal-channel angular pressing. Adv. Eng. Mater. 2015, 17, 1022–1033. [Google Scholar] [CrossRef]
- Xu, C.; Furukawa, M.; Horita, Z.; Langdon, T.G. The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP. Mater. Sci. Eng. A 2005, 398, 66–76. [Google Scholar] [CrossRef]
- Inoue, T.; Horita, Z.; Somekawa, H.; Yin, F. Distributions of hardness and strain during compression in pure aluminum processed with equal-channel angular pressing and subsequent annealing. Mater. Trans. 2009, 50, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Gubicza, J.; Chinh, N.Q.; Horita, Z.; Langdon, T.G. Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater. Sci. Eng. A 2004, 387–389, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Horita, Z.; Fujinami, T.; Nemoto, M.; Langdon, T.G. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 2000, 31, 691–701. [Google Scholar] [CrossRef]
- Kamikawa, N.; Huang, X.; Tsuji, N.; Hansen, N.; Minamino, Y. EBSD and TEM characterization of ultrafine grained high purity aluminum produced by accumulative roll-bonding. Mater. Sci. Forum 2006, 512, 91–96. [Google Scholar]
- Kamikawa, N.; Zhang, H.W.; Huang, X.; Hansen, N. Microstructure and mechanical properties of nanostructured metals produced by high strain deformation. Mater. Sci. Forum 2008, 579, 135–146. [Google Scholar]
- Huang, X.; Kamikawa, N.; Hansen, N. Strengthening mechanisms in nanostructured aluminum. Mater. Sci. Eng. A 2008, 483–484, 102–104. [Google Scholar] [CrossRef]
- Pirgazi, H.; Akbarzadeh, A.; Petrov, R.; Kestens, L. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A 2008, 497, 132–138. [Google Scholar] [CrossRef]
- Adachi, H.; Miyajima, Y.; Sato, M.; Tsuji, N. Evaluation of dislocation density for 1100 aluminum with different grain size during tensile deformation by using in-situ X-ray diffraction technique. Mater. Trans. 2015, 56, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Akama, D.; Nishio, A.; Lee, S.; Yonenaga, Y.; Cubero-Sesin, J.M.; Horita, Z. Corrigendum to: ‘influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion’ [Acta Mater. 69 (2014) 68–77]. Acta Mater. 2014, 78, 404–405. [Google Scholar] [CrossRef]
- Edalati, K.; Akama, D.; Nishio, A.; Lee, S.; Yonenaga, Y.; Cubero-Sesin, J.M.; Horita, Z. Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 2014, 69, 68–77. [Google Scholar] [CrossRef]
- Pereira, P.H.R.; Huang, Y.; Langdon, T.G. Thermal stability and superplastic behaviour of an Al-Mg-Sc alloy processed by ECAP and HPT at different temperatures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 194, 012013. [Google Scholar] [CrossRef] [Green Version]
- Sakai, G.; Horita, Z.; Langdon, T.G. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2005, 393, 344–351. [Google Scholar] [CrossRef]
- Fátay, D.; Bastarash, E.; Nyilas, K.; Dobatkin, S.; Gubicza, J.; Ungár, T. X-ray diffraction study on the microstructure of an Al-Mg-Sc-Zr alloy deformed by high-pressure torsion. Int. J. Mater. Res. 2003, 94, 842–847. [Google Scholar] [CrossRef]
- Sauvage, X.; Cuvilly, F.; Russell, A.; Edalati, K. Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum. Mater. Sci. Eng. A 2020, 798, 140108. [Google Scholar] [CrossRef]
- Zhu, Z.; Han, J.; Gao, C.; Liu, M.; Song, J.; Wang, Z.; Li, H. Microstructures and mechanical properties of Al-Li 2198-T8 alloys processed by two different severe plastic deformation methods: A comparative study. Mater. Sci. Eng. A 2017, 681, 65–73. [Google Scholar] [CrossRef]
- Duchaussoy, A.; Sauvage, X.; Edalati, K.; Horita, Z.; Renou, G.; Deschamps, A.; De Geuser, F. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles. Acta Mater. 2019, 167, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Enikeev, N.A.; Murashkin, M.Y.; Arita, M.; Edalati, K. Developing age-Hardenable Al-Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Mater. 2021, 203, 116503. [Google Scholar] [CrossRef]
- Mohammadi, A.; Nariman, A.E.; Maxim, Y.M.; Makoto, A.; Edalati, K. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J. Mater. Sci. Technol. 2021, 91, 78–89. [Google Scholar] [CrossRef]
- Masuda, T.; Sauvage, X.; Hirosawa, S.; Horita, Z. Achieving Highly strengthened Al-Cu-Mg alloy by grain refinement and grain boundary segregation. Mater. Sci. Eng. A 2020, 793, 139668. [Google Scholar] [CrossRef]
- Mohamed, I.F.; Masuda, T.; Lee, S.; Edalati, K.; Horita, Z.; Hirosawa, S.; Matsuda, K.; Terada, D.; Omar, M.Z. Strengthening of A2024 alloy by high-pressure torsion and subsequent aging. Mater. Sci. Eng. A 2017, 704, 112–118. [Google Scholar] [CrossRef]
- Alhamidi, A.; Horita, Z. Grain Refinement and high strain rate superplasticity in alumunium 2024 alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2015, 622, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gao, N.; Sha, G.; Ringer, S.P.; Starink, M.J. Microstructural Evolution, Strengthening and Thermal Stability of an Ultrafine-Grained Al-Cu-Mg Alloy. Acta Mater. 2016, 109, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Bobruk, E.V.; Murashkin, M.Y.; Kazikhanov, V.U.; Valiev, R.Z. Aging behavior and properties of ultrafine-grained aluminum alloys of Al-Mg-Si system. Rev. Adv. Mater. Sci. 2012, 31, 109–115. [Google Scholar]
- Mohamed, I.F.; Lee, S.; Edalati, K.; Horita, Z.; Hirosawa, S.; Matsuda, K.; Terada, D. Aging behavior of Al 6061 alloy processed by high-pressure torsion and subsequent aging. Metall. Mater. Trans. A 2015, 46, 2664–2673. [Google Scholar] [CrossRef]
- Moreno-Valle, E.C.; Sabirov, I.; Perez-Prado, M.T.; Murashkin, M.Y.; Bobruk, E.V.; Valiev, R.Z. Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures. Mater. Lett. 2011, 65, 2917–2919. [Google Scholar] [CrossRef]
- Loucif, A.; Figueiredo, R.B.; Baudin, T.; Brisset, F.; Langdon, T.G. Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2010, 527, 4864–4869. [Google Scholar] [CrossRef]
- Xu, C.; Horita, Z.; Langdon, T.G. The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Mater. 2008, 56, 5168–5176. [Google Scholar] [CrossRef]
- Sato, Y.S.; Urata, M.; Kokawa, H.; Ikeda, K. Effect of friction stirring on microstructure in equal channel angular pressed aluminum alloys. Mater. Sci. Forum. 2003, 426–432, 2947–2952. [Google Scholar]
- Kim, W.J.; Kim, J.K.; Park, T.Y.; Hong, S.I.; Kim, D.I.; Kim, Y.S.; Lee, J.D. Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing. Metall. Mater. Trans. A 2002, 33, 3155–3164. [Google Scholar] [CrossRef]
- Khatami, R.; Fattah-Alhosseini, A.; Mazaheri, Y.; Keshavarz, M.K.; Haghshenas, M. Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding. Int. J. Adv. Manuf. Technol. 2017, 93, 681–689. [Google Scholar] [CrossRef]
- Rezaei, M.R.; Toroghinejad, M.R.; Ashrafizadeh, F. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy. J. Mater. Procs. Technol. 2011, 211, 1184–1190. [Google Scholar] [CrossRef]
- Lee, S.H.; Saito, Y.; Sakai, T.; Utsunomiya, H. Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater. Sci. Eng. A 2002, 325, 228–235. [Google Scholar] [CrossRef]
- Xing, Z.P.; Kang, S.B.; Kim, H.W. Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process. Metall. Mater. Trans. A 2002, 33, 1521–1530. [Google Scholar] [CrossRef]
- Edalati, K.; Imamura, K.; Kiss, T.; Horita, Z. Equal-channel angular pressing and high-pressure torsion of pure copper: Evolution of electrical conductivity and hardness with strain. Mater. Trans. 2012, 53, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Schafler, E.; Kerber, M.B. Microstructural investigation of the annealing behaviour of high-pressure torsion (HPT) deformed copper. Mater. Sci. Eng. A 2007, 462, 139–143. [Google Scholar] [CrossRef]
- Khatibi, G.; Horky, J.; Weiss, B.; Zehetbauer, M.J. High cycle fatigue behaviour of copper deformed by high pressure torsion. Int. J. Fatig. 2010, 32, 269–278. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Wang, C.T.; Shan, D.; Guo, B.; Langdon, T.G. Evidence for an early softening behavior in pure copper processed by high-pressure torsion. J. Mater. Sci. 2015, 51, 1923–1930. [Google Scholar] [CrossRef]
- Lugo, N.; Llorca, N.; Cabrera, J.M.; Horita, Z. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater. Sci. Eng. A 2008, 477, 366–371. [Google Scholar] [CrossRef]
- Gubicza, J.; Dobatkin, S.V.; Khosravi, E.; Kuznetsov, A.A.; Lábár, J.L. Microstructural stability of Cu processed by different routes of severe plastic deformation. Mater. Sci. Eng. A 2011, 528, 1828–1832. [Google Scholar] [CrossRef]
- An, X.H.; Wu, S.D.; Zhang, Z.F.; Figueiredo, R.B.; Gao, N.; Langdon, T.G. Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scr. Mater. 2010, 63, 560–563. [Google Scholar] [CrossRef]
- An, X.H.; Lin, Q.Y.; Wu, S.D.; Zhang, Z.F.; Figueiredo, R.B.; Gao, N.; Langdon, T.G. Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion. Philos. Mag. 2011, 91, 3307–3326. [Google Scholar] [CrossRef]
- Horita, Z.; Langdon, T.G. Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater. Sci. Eng. A 2005, 410–411, 422–425. [Google Scholar] [CrossRef]
- Čížek, J.; Janeček, M.; Srba, O.; Kužel, R.; Barnovská, Z.; Procházka, I.; Dobatkin, S. Evolution of defects in copper deformed by high-pressure torsion. Acta Mater. 2011, 59, 2322–2329. [Google Scholar] [CrossRef]
- Almazrouee, A.I.; Al-Fadhalah, K.J.; Alhajeri, S.N.; Langdon, T.G. Microstructure and microhardness of OFHC copper processed by high-pressure torsion. Mater. Sci. Eng. A 2015, 641, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Jahedi, M.; Paydar, M.H.; Zheng, S.; Beyerlein, I.J.; Knezevic, M. Texture evolution and enhanced grain refinement under high-pressure-double-torsion. Mater. Sci. Eng. A 2014, 611, 29–36. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Sergeev, S.N.; Langdon, T.G. Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature. J. Mater. Res. Technol. 2014, 3, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Zhilyaev, A.P.; Shakhova, I.; Belyakov, A.; Kaibyshev, R.; Langdon, T.G. Effect of annealing on wear resistance and electroconductivity of copper processed by high-pressure torsion. J. Mater. Sci. 2013, 49, 2270–2278. [Google Scholar] [CrossRef] [Green Version]
- Lugo, N.; Llorca, N.; Suñol, J.J.; Cabrera, J.M. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. J. Mater. Sci. 2010, 45, 2264–2273. [Google Scholar] [CrossRef]
- Molodova, X.; Gottstein, G.; Winning, M.; Hellmig, R.J. Thermal stability of ECAP processed pure copper. Mater. Sci. Eng. A 2007, 460–461, 204–213. [Google Scholar] [CrossRef]
- Hellmig, R.J.; Janecek, M.; Hadzima, B.; Gendelman, O.V.; Shapiro, M.; Molodova, X.; Springer, A.; Estrin, Y. A Portrait of copper processed by equal channel angular pressing. Mater. Trans. 2008, 49, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Kad, B.K.; Gregori, F.; Meyers, M. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 2007, 55, 13–28. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, Y.T.; Butt, D.P.; Alexandrov, I.V.; Lowe, T.C. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng. A 2000, 290, 128–138. [Google Scholar] [CrossRef]
- Molodova, X.; Khorashadizadeh, A.; Gottstein, G.; Winning, M.; Hellmig, R.J. Thermal stability of ECAP processed pure Cu and CuZr. Int. J. Mater. Res. 2007, 98, 269–275. [Google Scholar] [CrossRef]
- Kato, H.; Todaka, Y. Microstructure and wear properties of high-pressure torsion processed iron. Mater. Sci. Forum 2017, 890, 371–374. [Google Scholar]
- Tejedor, R.; Edalati, K.; Benito, J.A.; Horita, Z.; Cabrera, J.M. High-pressure torsion of iron with various purity levels and validation of Hall-Petch strengthening mechanism. Mater. Sci. Eng. A 2019, 743, 597–605. [Google Scholar] [CrossRef]
- Zhao, Y.; Massion, R.; Grosdidier, T.; Toth, L.S. Gradient structure in high pressure torsion compacted iron powder. Adv. Eng. Mater. 2015, 17, 1748–1753. [Google Scholar] [CrossRef]
- Hosokawa, A.; Ii, S.; Tsuchiya, K. Work hardening and microstructural development during high-pressure torsion in pure iron. Mater. Trans. 2014, 55, 1097–1103. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, A.; Ohtsuka, H.; Li, T.; Ii, S.; Tsuchiya, K. Micostructure and magnetic properties in nanostructured Fe and Fe-based intermetallics produced by high-pressure torsion. Mater. Trans. 2014, 55, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Degtyarev, M.V.; Chashchukhina, T.I.; Voronova, L.M.; Patselov, A.M.; Pilyugin, V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion. Acta Mater. 2007, 55, 6039–6050. [Google Scholar] [CrossRef]
- Kato, H.; Todaka, Y.; Umemoto, M.; Haga, M.; Sentoku, E. Sliding wear behavior of sub-microcrystalline pure iron produced by high-pressure torsion straining. Wear 2015, 336–337, 58–68. [Google Scholar] [CrossRef]
- Todaka, Y.; Miki, Y.; Umemoto, M.; Wang, C.H.; Tsuchiya, K. Tensile property of submicrocrystalline pure Fe produced by HPT-straining. Mater. Sci. Forum 2008, 584–586, 597–602. [Google Scholar]
- Zhao, Y.J.; Massion, R.; Grosdidier, T.; Toth, L.S. Contribution of shear deformation to grain refinement and densification of iron powder consolidated by high pressure torsion. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012032. [Google Scholar] [CrossRef] [Green Version]
- Glezer, A.M.; Tomchuk, A.A.; Rassadina, T.V. Effect of the fraction and direction of high-pressure torsion deformation in a Bridgman cell on the structure and mechanical properties of commercial-purity iron. Russ. Metall. 2015, 4, 295–300. [Google Scholar] [CrossRef]
- Suś-Ryszkowska, M.; Pakiela, Z.; Valiev, R.; Wyrzykowski, J.W.; Kurzydlowski, K.J. Mechanical properties of nanostructured iron obtained by various methods of severe plastic deformation. Sol. Stat. Phenom. 2005, 101–102, 85–90. [Google Scholar]
- Valiev, R.Z.; Ivanisenko, Y.V.; Rauch, E.F.; Baudelet, B. Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 1996, 44, 4705–4712. [Google Scholar] [CrossRef]
- Wetscher, F.; Vorhauer, A.; Stock, R.; Pippan, R. Structural refinement of low alloyed steels during severe plastic deformation. Mater. Sci. Eng. A 2004, 387–389, 809–816. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Kammerhofer, C.; Pippan, R. The ductile to brittle transition of ultrafine-grained Armco iron: An experimental study. J. Mater. Sci. 2010, 45, 4805–4812. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Pippan, R. Anisotropic fracture behavior of ultrafine-grained iron. Mater. Sci. Eng. A 2010, 527, 2649–2656. [Google Scholar] [CrossRef]
- Mine, Y.; Horita, Z.; Murakami, Y. Effect of High-Pressure Torsion on Hydrogen Trapping in Fe–0.01mass% C and Type 310s Austenitic Stainless Steel. Acta Mater. 2010, 58, 649–657. [Google Scholar] [CrossRef]
- Zhang, Y.; Sao-Joao, S.; Descartes, S.; Kermouche, S.; Montheillet, F.; Desrayaud, C. Microstructural evolution and mechanical properties of ultrafine-grained pure α-iron and Fe-0.02%C steel processed by high-pressure torsion: Influence of second-phase particles. Mater. Sci. Eng. A 2020, 795, 139915. [Google Scholar] [CrossRef]
- Todaka, Y.; Umemoto, M.; Yin, J.; Liu, Z.; Tsuchiya, K. Role of strain gradient on grain refinement by severe plastic deformation. Mater. Sci. Eng. A 2007, 462, 264–268. [Google Scholar] [CrossRef]
- Borchers, C.; Garve, C.; Tiegel, M.; Deutges, M.; Herz, A.; Edalati, K.; Pippan, R.; Horita, Z.; Kirchheim, R. Nanocrystalline steel obtained by mechanical alloying of iron and graphite subsequently compacted by high-pressure torsion. Acta Mater. 2015, 97, 207–215. [Google Scholar] [CrossRef]
- Han, B.Q.; Mohamed, F.A.; Lavernia, E.J. Mechanical properties of iron processed by severe plastic deformation. Metall. Mater. Trans. A 2003, 34, 71–83. [Google Scholar] [CrossRef]
- Suś-Ryszkowska, M.; Wejrzanowski, T.; Pakieła, Z.; Kurzydłowski, K.J. Microstructure of ECAP severely deformed iron and its mechanical properties. Mater. Sci. Eng. A 2004, 369, 151–156. [Google Scholar] [CrossRef]
- Smith, W.F.; Hashemi, J. Foundations of Materials Science and Engineering; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Takaki, S.; Kawasaki, K.; Kimura, Y. Mechanical properties of ultra fine grained steels. J. Mater. Process. Technol. 2001, 117, 359–363. [Google Scholar] [CrossRef]
- Takaki, S. Review on the Hall-Petch relation in ferritic steel. Mater. Sci. Forum 2010, 654–656, 11–16. [Google Scholar]
- Edalati, K.; Horita, Z. Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion. Scr. Mater. 2011, 64, 161–164. [Google Scholar] [CrossRef]
- Edalati, K.; Uehiro, R.; Fujiwara, K.; Ikeda, Y.; Li, H.W.; Sauvage, X.; Valiev, R.Z.; Akiba, E.; Tanaka, I.; Horita, Z. Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems. Mater. Sci. Eng. A 2017, 701, 158–166. [Google Scholar] [CrossRef]
- Edalati, K. Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process. Mater. Trans. 2019, 60, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Romanova, V.; Balokhonov, R.; Zinovieva, O. Mesoscale deformation-induced surface phenomena in loaded polycrystals. Facta Univ. Ser. Mech. Eng. 2021, 19, 187–198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dangwal, S.; Edalati, K.; Valiev, R.Z.; Langdon, T.G. Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron. Crystals 2023, 13, 413. https://doi.org/10.3390/cryst13030413
Dangwal S, Edalati K, Valiev RZ, Langdon TG. Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron. Crystals. 2023; 13(3):413. https://doi.org/10.3390/cryst13030413
Chicago/Turabian StyleDangwal, Shivam, Kaveh Edalati, Ruslan Z. Valiev, and Terence G. Langdon. 2023. "Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron" Crystals 13, no. 3: 413. https://doi.org/10.3390/cryst13030413
APA StyleDangwal, S., Edalati, K., Valiev, R. Z., & Langdon, T. G. (2023). Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron. Crystals, 13(3), 413. https://doi.org/10.3390/cryst13030413