Crystallographic Analysis on the Upper Bainite Formation at the Austenite Grain Boundary in Fe-0.6C-0.8Mn-1.8Si Steel in the Initial Stage of Transformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology of Bainitic Ferrite Formed at Prior Austenite Grain Boundaries
3.2. Effect of the Character of the Prior Austenite Grain Boundary on the Formation of Bainitic Ferrite
3.3. Geometrical Relationship between the Bainitic Ferrite and the Prior Austenite Grain Boundary
3.4. Crystal Orientation Relationship between the Bainitic Ferrite and the Adjacent Austenite Grain
3.5. Crystal Orientation Relationship between the Bainitic Ferrite and the Bainitic Ferrite in the Adjacent Austenite Grain
3.6. Effect of the Shape Strain on the Formation of Bainitic Ferrite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Elastic Strain Energy [7,32]
Appendix A.2. Connectivity of Each Component [6,29]
Appendix A.3. KC Condition [30,31]
References
- Bhadeshia, H.K.D.H. Bainite in Steels: Theory and Practice; Maney Publishing: Leeds, UK, 2015. [Google Scholar] [CrossRef]
- Kurdjumov, G.; Sachs, G. Uber den Mechanismus der Stahlhartung. Z. Phys. 1930, 64, 325–343. [Google Scholar] [CrossRef]
- Furuhara, T.; Kawata, H.; Morito, S.; Miyamoto, G.; Maki, T. Variant Selection in Grain Boundary Nucleation of Upper Bainite. Metall. Mater. Trans. A 2008, 39, 1003–1013. [Google Scholar] [CrossRef]
- Kaneshita, T.; Miyamoto, G.; Furuhara, T. Variant selection in grain boundary nucleation of bainite in Fe-2Mn-C alloys. Acta Mater. 2017, 127, 368–378. [Google Scholar] [CrossRef]
- Archie, F.; Zaefferer, S. On variant selection at the prior austenite grain boundaries in lath martensite and relevant micro-mechanical implications. Mater. Sci. Eng. A 2018, 731, 539–550. [Google Scholar] [CrossRef]
- Ueda, M.; Yasuda, H.Y.; Umakoshi, Y. Effect of grain boundary on martensite transformation behaviour in Fe–32 at.%Ni bicrystals. Sci. Tech. Adv. Mater. 2002, 3, 171–179. [Google Scholar] [CrossRef]
- Ueda, M.; Yasuda, H.Y.; Umakoshi, Y. Controlling factor for nucleation of martensite at grain boundary in Fe-Ni bicrystals. Acta Mater. 2003, 51, 1007–1017. [Google Scholar] [CrossRef]
- Nagano, T.; Enomoto, M. Calculation of the interfacial energies between α and γ iron and equilibrium particle shape. Metall. Mat. Trans A 2006, 37, 929–937. [Google Scholar] [CrossRef]
- Hielscher, R.; Schaeben, H.J. A novel pole figure inversion method: Specification of the MTEX algorithm. Appl. Crystallogr. 2008, 41, 1024–1037. [Google Scholar] [CrossRef]
- Nyyssönen, T.; Isakov, M.; Peura, P.; Kuokkala, V.T. Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel. Metall. Mater. Trans. A 2016, 49, 6426–6441. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys; Pergamon: Oxford, UK, 2002. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E.; Sherif, M.Y. Phase Transformations in Metals and Alloys; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Bulatov, V.V.; Reed, B.W.; Kumar, M. Grain boundary energy function for fcc metals. Acta Mater. 2014, 65, 161–175. [Google Scholar] [CrossRef]
- Olmsted, D.L.; Foiles, S.M.; Elizabeth, H.A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009, 57, 3694–3703. [Google Scholar] [CrossRef]
- Holm, E.A.; Olmsted, D.L.; Foiles, S.M. Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr. Mater. 2010, 63, 905–908. [Google Scholar] [CrossRef]
- Beladi, H.; Nuhfer, N.T.; Rohre, G.S. The five-parameter grain boundary character and energy distributions of a fully austenitic high-manganese steel using three dimensional data. Acta Mater. 2014, 70, 281–289. [Google Scholar] [CrossRef]
- Davey, W.P. Precision Measurements of the Lattice Constants of Twelve Common Metals. Phys. Rev. 1925, 25, 753. [Google Scholar] [CrossRef]
- Babu, S.S.; Specht, E.D.; David, S.A.; Karapetrova, E.; Zschack, P.; Peet, M.; Bhadeshia, H.K.D.H. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite. Metall. Mater. Trans. A 2005, 36, 3281–3289. [Google Scholar] [CrossRef]
- Bowles, J.S.; Mackenzie, J.K. The crystallography of martensite transformations I. Acta Metall. 1954, 2, 129–137. [Google Scholar] [CrossRef]
- Kelly, P.M. Crystallography of Lath Martensite in Steels. Mater. Trans. JIM 1992, 33, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Komine, S.; Sekido, K.; Inoue, J. In-situ measurement of surface relief induced by Widmanstätten and bainitic ferrites in low carbon steel by digital holographic microscopy. Scr. Mater. 2019, 162, 241–245. [Google Scholar] [CrossRef]
- Swallow, E.; Bhadeshia, H.K.D.H. High resolution observations of displacements caused by bainitic transformation. Mater. Sci. Technol. 1996, 12, 121–125. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Tsuzaki, K.; Nakao, C.; Maki, T. Formation Temperature of Bainitic Ferrite in Si-Containing Steels. Mater. Trans. JIM 1991, 32, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Oka, M.; Okamoto, H. Variation of Transition Temperatures from Upper to Lower Bainites in Plain Carbon Steels. J. Phys. IV 1995, 5, 503. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y. Morphology and properties of low-carbon bainite. Metall. Trans. A 1990, 21, 877–888. [Google Scholar] [CrossRef]
- Nambu, S.; Shibuta, N.; Ojima, M.; Inoue, J.; Koseki, T.; Bhadeshia, H.K.D.H. In situ observations and crystallographic analysis of martensitic transformation in steel. Acta Mater. 2013, 61, 4831–4839. [Google Scholar] [CrossRef]
- Basak, A.; Levitas, V.I. Nanoscale multiphase phase field approach for stress-and temperature-induced martensitic phase transformations with interfacial stresses at finite strains. J. Mech. Phys. Solids 2018, 113, 162–196. [Google Scholar] [CrossRef] [Green Version]
- Livingston, J.D.; Chalmers, B. Multiple slip in bicrystal deformation. Acta Metall. 1957, 5, 322–327. [Google Scholar] [CrossRef]
- Shinohara, Y.; Akabane, S.; Inamura, T. Analysis of variant-pairing tendencies in lenticular martensite microstructures based on rank-1 connection. Sci. Rep. 2021, 11, 14957. [Google Scholar] [CrossRef]
- Bhattacharya, K. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect; OUP: Oxford, UK, 2003. [Google Scholar]
- Mura, T. Micromechanics of Defects in Solids; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
PAGB Where BFs Were Formed | PAGB Where BFs Were Not Formed | |
---|---|---|
Twist-like PAGB | 7 | 16 |
Tilt-like PAGB | 14 | 39 |
Fraction of twist-like PAGB | 0.33 | 0.29 |
BF Formation | [°] | [°] | Shape Deformation Matrix | KC Condition | ||||||
---|---|---|---|---|---|---|---|---|---|---|
q [°] | [°] | |||||||||
PAGB1 | formed | 4.7 | 4.6 | 41.1 | Sol.1 | 5.0 | 59.5 | |||
49.0 | Sol.2 | 18.5 | 45.6 | |||||||
did not form | 5.0 | 11.6 | 0.4 | Sol.1 | 10.0 | 13.1 | ||||
5.8 | Sol.2 | - | 87.7 | |||||||
PAGB2 | formed | 5.4 | 5.1 | 39.6 | Sol.1 | 7.5 | 63.7 | |||
87.1 | Sol.2 | 13.1 | 25.8 | |||||||
did not form | 4.2 | 10.4 | 1.9 | Sol.1 | 7.2 | 41.7 | ||||
66.5 | Sol.2 | 12.9 | 48.7 | |||||||
PAGB3 | formed | 8.5 | 11.6 | 13.4 | Sol.1 | 7.4 | 63.2 | |||
19.7 | Sol.2 | - | 89.6 | |||||||
did not form | 7.2 | 13.0 | 44.0 | Sol.1 | 9.9 | 84.8 | ||||
70.5 | Sol.2 | 12.3 | 20.9 | |||||||
PAGB4 | formed | 4.1 | 5.6 | 32.1 | Sol.1 | 3.7 | 28.5 | |||
21.5 | Sol.2 | 18.0 | 63.7 | |||||||
did not form | 2.6 | 4.4 | 46.8 | Sol.1 | 17.5 | 48.7 | ||||
41.3 | Sol.2 | - | 64.9 | |||||||
PAGB5 | formed | 4.8 | 5.1 | 46.4 | Sol.1 | 3.4 | 43.4 | |||
40.0 | Sol.2 | 18.0 | 47.2 | |||||||
did not form | 4.7 | 3.8 | 40.6 | Sol.1 | 17.3 | 54.2 | ||||
37.8 | Sol.2 | - | 80.2 | |||||||
PAGB6 | formed | 3.9 | 6.3 | 71.8 | Sol.1 | - | 11.1 | |||
85.4 | Sol.2 | - | 24.5 | |||||||
did not form | 3.4 | 7.0 | 8.8 | Sol.1 | 16.5 | 14.4 | ||||
69.2 | Sol.2 | 17.6 | 15.4 | |||||||
PAGB7 | formed | 3.6 | 7.6 | 40.9 | Sol.1 | 8.2 | 11.5 | |||
23.5 | Sol.2 | 12.8 | 79.4 | |||||||
did not form | 9.5 | 7.9 | 74.2 | Sol.1 | 11.5 | 64.0 | ||||
70.5 | Sol.2 | 18.0 | 64.0 | |||||||
PAGB8 | formed | 1.6 | 9.2 | 6.9 | Sol.1 | 2.1 | 69.4 | |||
71.5 | Sol.2 | - | 29.5 | |||||||
did not form | 7.6 | 5.3 | 46.2 | Sol.1 | 1.5 | 51.6 | ||||
32.9 | Sol.2 | 18.2 | 51.6 | |||||||
dd not form | 6.2 | 2.6 | 46.2 | Sol.1 | 13.2 | 42.2 | ||||
61.9 | Sol.2 | 13.5 | 52.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimbo, S.; Nambu, S. Crystallographic Analysis on the Upper Bainite Formation at the Austenite Grain Boundary in Fe-0.6C-0.8Mn-1.8Si Steel in the Initial Stage of Transformation. Crystals 2023, 13, 414. https://doi.org/10.3390/cryst13030414
Jimbo S, Nambu S. Crystallographic Analysis on the Upper Bainite Formation at the Austenite Grain Boundary in Fe-0.6C-0.8Mn-1.8Si Steel in the Initial Stage of Transformation. Crystals. 2023; 13(3):414. https://doi.org/10.3390/cryst13030414
Chicago/Turabian StyleJimbo, Shotaro, and Shoichi Nambu. 2023. "Crystallographic Analysis on the Upper Bainite Formation at the Austenite Grain Boundary in Fe-0.6C-0.8Mn-1.8Si Steel in the Initial Stage of Transformation" Crystals 13, no. 3: 414. https://doi.org/10.3390/cryst13030414
APA StyleJimbo, S., & Nambu, S. (2023). Crystallographic Analysis on the Upper Bainite Formation at the Austenite Grain Boundary in Fe-0.6C-0.8Mn-1.8Si Steel in the Initial Stage of Transformation. Crystals, 13(3), 414. https://doi.org/10.3390/cryst13030414