Interactions between PTCDI-C8 and Si(100) Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Lee, E.K.; Kim, D.Y.; Yu, H.; Oh, J.H. Flexible Organic Phototransistor Array with Enhanced Responsivity via Metal–Ligand Charge Transfer. ACS Appl. Mater. Interfaces 2016, 8, 7291–7299. [Google Scholar] [CrossRef] [PubMed]
- Niederhausen, J.; Mazzio, K.A.; MacQueen, R.W. Inorganic–Organic Interfaces in Hybrid Solar Cells. Electron. Struct. 2021, 3, 033002. [Google Scholar] [CrossRef]
- Han, J.; Wang, F.; Han, S.; Deng, W.; Du, X.; Yu, H.; Gou, J.; Wang, Q.J.; Wang, J. Recent Progress in 2D Inorganic/Organic Charge Transfer Heterojunction Photodetectors. Adv. Funct. Mater. 2022, 32, 2205150. [Google Scholar] [CrossRef]
- Pei, K.; Zhai, T. Emerging 2D Organic-Inorganic Heterojunctions. Cell Rep. Phys. Sci. 2020, 1, 100166. [Google Scholar] [CrossRef]
- Zuzak, R.; Castro-Esteban, J.; Engelund, M.; Pérez, D.; Peña, D.; Godlewski, S. On-Surface Synthesis of Nanographenes and Graphene Nanoribbons on Titanium Dioxide. ACS Nano 2023, 17, 2580–2587. [Google Scholar] [CrossRef]
- Bent, S.F. Attaching Organic Layers to Semiconductor Surfaces. J. Phys. Chem. B 2002, 106, 2830–2842. [Google Scholar] [CrossRef]
- Bilić, A.; Reimers, J.R.; Hush, N.S. Functionalization of semiconductor surfaces by organic layers: Concerted cycloaddition versus stepwise free-radical reaction mechanisms. In Properties of Single Organic Molecules on Crystal Surfaces; Imperial College Press: London, UK; World Scientific Publishing Co.: Singapore, 2006; pp. 333–360. ISBN 978-1-86094-628-8. [Google Scholar]
- Kim, H.; Colavita, P.E.; Metz, K.M.; Nichols, B.M.; Sun, B.; Uhlrich, J.; Wang, X.; Kuech, T.F.; Hamers, R.J. Photochemical Functionalization of Gallium Nitride Thin Films with Molecular and Biomolecular Layers. Langmuir 2006, 22, 8121–8126. [Google Scholar] [CrossRef]
- Kampen, T.U.; Gavrila, G.; Méndez, H.; Zahn, D.R.T.; Vearey-Roberts, A.R.; Evans, D.A.; Wells, J.; McGovern, I.; Braun, W. Electronic Properties of Interfaces between Perylene Derivatives and GaAs(001) Surfaces. J. Phys. Condens. Matter 2003, 15, S2679–S2692. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, N.; Salomon, E.; Angot, T.; Layet, J.-M.; Giovanelli, L.; Lay, G.L. Physics of Ultra-Thin Phthalocyanine Films on Semiconductors. Prog. Surf. Sci. 2004, 77, 139–170. [Google Scholar] [CrossRef]
- Grodzicki, M.; Sito, J.; Lewandków, R.; Mazur, P.; Ciszewski, A. Interfacial Polarization of Thin Alq3, Gaq3, and Erq3 Films on GaN(0001). Materials 2022, 15, 1671. [Google Scholar] [CrossRef]
- Kocán, P.; Pieczyrak, B.; Jurczyszyn, L.; Yoshimoto, Y.; Yagyu, K.; Tochihara, H.; Suzuki, T. Self-Ordering of Chemisorbed PTCDA Molecules on Ge(001) Driven by Repulsive Forces. Phys. Chem. Chem. Phys. 2019, 21, 9504–9511. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Yoshimoto, Y.; Yagyu, K.; Tochihara, H. Adsorption of PTCDA on Si(001) − 2 × 1 Surface. J. Chem. Phys. 2015, 142, 101904. [Google Scholar] [CrossRef] [PubMed]
- Lament, K.; Mazur, P.; Zuber, S.; Ciszewski, A. PTCDI-C8 Adsorption on Si(100). Acta Phys. Pol. A 2013, 124, 775–776. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Asare-Yeboah, K.; Bi, S. Binary Solvent Engineering for Small-Molecular Organic Semiconductor Crystallization. Mater. Adv. 2023, 4, 769–786. [Google Scholar] [CrossRef]
- Warczak, M.; Gryszel, M.; Jakešová, M.; Đerek, V.; Głowacki, E.D. Organic Semiconductor Perylenetetracarboxylic Diimide (PTCDI) Electrodes for Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. Chem. Commun. 2018, 54, 1960–1963. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate Organic Crystal Morphology and Charge Transport. Org. Electron. 2022, 103, 106448. [Google Scholar] [CrossRef]
- Yasuda, T.; Sakamoto, K. Influence of the Alkyl Chain Lengths in Perylenetetracarboxylic Diimide (PTCDI) Derivatives on the Photovoltaic Properties of Planar Organic Solar Cells. Org. Electron. 2018, 62, 429–433. [Google Scholar] [CrossRef]
- Taborski, J.; Väterlein, P.; Dietz, H.; Zimmermann, U.; Umbach, E. NEXAFS Investigations on Ordered Adsorbate Layers of Large Aromatic Molecules. J. Electron Spectrosc. Relat. Phenom. 1995, 75, 129–147. [Google Scholar] [CrossRef]
- Wright, J.; Chang, C.; Waters, D.; Lüpke, F.; Feenstra, R.; Raymond, L.; Koscica, R.; Khalsa, G.; Muller, D.; Xing, H.G.; et al. Unexplored MBE Growth Mode Reveals New Properties of Superconducting NbN. Phys. Rev. Mater. 2021, 5, 024802. [Google Scholar] [CrossRef]
- Fratesi, G.; Lanzilotto, V.; Stranges, S.; Alagia, M.; Brivio, G.P.; Floreano, L. High Resolution NEXAFS of Perylene and PTCDI: A Surface Science Approach to Molecular Orbital Analysis. Phys. Chem. Chem. Phys. 2014, 16, 14834. [Google Scholar] [CrossRef] [Green Version]
- Emanuelsson, C.; Johansson, L.S.O.; Zhang, H.M. Photoelectron Spectroscopy Studies of PTCDI on Ag/Si(111)-3×3. J. Chem. Phys. 2018, 149, 044702. [Google Scholar] [CrossRef] [PubMed]
- Emanuelsson, C.; Johansson, L.S.O.; Zhang, H.M. Photoelectron Spectroscopy Studies of PTCDI on Sn/Si(111)- 2 3 × 2 3. Chem. Phys. 2020, 539, 110973. [Google Scholar] [CrossRef]
- Arramel; Yin, X.; Wang, Q.; Zheng, Y.J.; Song, Z.; bin Hassan, M.H..; Qi, D.; Wu, J.; Rusydi, A.; Wee, A.T.S. Molecular Alignment and Electronic Structure of N, N ′-Dibutyl-3,4,9,10-Perylene-Tetracarboxylic-Diimide Molecules on MoS 2 Surfaces. ACS Appl. Mater. Interfaces 2017, 9, 5566–5573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, Z.; Zhao, B.; Yang, Y.; Xiong, Y.; Gao, X.; Qi, D.-C.; Cao, L. Chemical Interaction Dictated Energy Level Alignment at the N,N′-Dipentyl-3,4,9,10-Perylenedicarboximide/CH3NH3PbI3 Interface. Appl. Phys. Lett. 2018, 113, 113901. [Google Scholar] [CrossRef] [Green Version]
- Malenfant, P.R.L.; Dimitrakopoulos, C.D.; Gelorme, J.D.; Kosbar, L.L.; Graham, T.O.; Curioni, A.; Andreoni, W. N -Type Organic Thin-Film Transistor with High Field-Effect Mobility Based on a N,N′-Dialkyl-3,4,9,10-Perylene Tetracarboxylic Diimide Derivative. Appl. Phys. Lett. 2002, 80, 2517–2519. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Hao, Y.; Chang, J.; Wu, J. Controllable Self-Assembly of PTCDI-C8 for High Mobility Low-Dimensional Organic Field-Effect Transistors. ACS Appl. Electron. Mater. 2019, 1, 2030–2036. [Google Scholar] [CrossRef]
- Karak, S.; Ray, S.K.; Dhar, A. Improved Photovoltaic Properties of Pentacene/N,N′-Dioctyl-3,4,9,10-Perylenedicarboximide-Based Organic Heterojunctions with Thermal Annealing. Sol. Energy Mater. Sol. Cells 2010, 94, 836–841. [Google Scholar] [CrossRef]
- Wu, S.; Li, W.; Chu, B.; Su, Z.; Zhang, F.; Lee, C.S. High Performance Small Molecule Photodetector with Broad Spectral Response Range from 200 to 900 Nm. Appl. Phys. Lett. 2011, 99, 023305. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Y.; Wang, H.; Samorì, P. Organic Photodetectors Based on Supramolecular Nanostructures. SmartMat 2020, 1, smm2.1009. [Google Scholar] [CrossRef]
- Lament, K.; Kamiński, W.; Mazur, P.; Zuber, S.; Ciszewski, A. Molecular Recognition of PTCDI–C8 Molecules on the Si(110)–(16×2) Surface. Appl. Surf. Sci. 2014, 304, 50–55. [Google Scholar] [CrossRef]
- Hiroshiba, N.; Hayakawa, R.; Petit, M.; Chikyow, T.; Matsuishi, K.; Wakayama, Y. Structural Analysis and Transistor Properties of Hetero-Molecular Bilayers. Thin. Solid Films 2009, 518, 441–443. [Google Scholar] [CrossRef]
- Krauss, T.N.; Barrena, E.; de Oteyza, D.G.; Zhang, X.N.; Major, J.; Dehm, V.; Würthner, F.; Dosch, H. X-ray/Atomic Force Microscopy Study of the Temperature-Dependent Multilayer Structure of PTCDI-C 8 Films on SiO2. J. Phys. Chem. C 2009, 113, 4502–4506. [Google Scholar] [CrossRef]
- Sito, J.; Grodzicki, M.; Lament, K.; Wasielewski, R.; Mazur, P.; Ciszewski, A. Electronic Properties of Structures Containing Films of Alq 3 and LiBr Deposited on Si(111) Crystal. Acta Phys. Pol. A 2017, 132, 357–360. [Google Scholar] [CrossRef]
- Mazur, P.; Sito, J.; Grodzicki, M.; Lament, K.; Crofton, M.; Ciszewski, A. Influence of Ionic Interfacial Layers on Electronic Properties of Alq3/Si(100) Interface. Surf. Interface Anal. 2018, 50, 623–627. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lament, K.; Grodzicki, M.; Mazur, P.; Sabik, A.; Lewandków, R.; Ciszewski, A. Interactions between PTCDI-C8 and Si(100) Surface. Crystals 2023, 13, 441. https://doi.org/10.3390/cryst13030441
Lament K, Grodzicki M, Mazur P, Sabik A, Lewandków R, Ciszewski A. Interactions between PTCDI-C8 and Si(100) Surface. Crystals. 2023; 13(3):441. https://doi.org/10.3390/cryst13030441
Chicago/Turabian StyleLament, Katarzyna, Miłosz Grodzicki, Piotr Mazur, Agata Sabik, Rafał Lewandków, and Antoni Ciszewski. 2023. "Interactions between PTCDI-C8 and Si(100) Surface" Crystals 13, no. 3: 441. https://doi.org/10.3390/cryst13030441
APA StyleLament, K., Grodzicki, M., Mazur, P., Sabik, A., Lewandków, R., & Ciszewski, A. (2023). Interactions between PTCDI-C8 and Si(100) Surface. Crystals, 13(3), 441. https://doi.org/10.3390/cryst13030441