Isothermal Evaporations of the Brine from Tibet’s Laguocuo Salt Lake at 15 °C: Experiment and UNIQUAC Simulations
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Experimental Reagents
2.2. Experimental Process
2.3. Characterization
3. Results and Discussion
3.1. Physicochemical Parameters and Chemical Composition of Solid and Liquid Phases
3.2. Variation Law of Ions in the Liquid Phase
4. Evaporation Process Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, X.; Li, X.; Wei, C.; Deng, Z.; Liu, Y.; Li, M.; Zheng, S.; Huang, X. Recovery of NaCl and Na2SO4 from high salinity brine by purification and evaporation. Desalination 2022, 530, 115631. [Google Scholar] [CrossRef]
- Nie, X.; Sun, S.; Sun, Z.; Song, X.; Yu, J. Ion-fractionation of lithium ions from magnesiumions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 2017, 403, 128. [Google Scholar] [CrossRef]
- Jensen, C.A.Q.; Ali, A.; Mondal, S.; Macedonio, F.; Drioli, E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J. Membr. Sci. 2016, 505, 167. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H.; Shi, X.; Yang, X. Fractional crystallization for extracting lithium from Cha′erhan tail brine. Hydrometallurgy 2017, 167, 124. [Google Scholar] [CrossRef] [Green Version]
- Jannet, D.B.; M’nif, A.; Rokbani, R. Natural brine valorisation: Application of the system K+, Mg2+/C1−, SO42−//H2O at 25°C. Desalination 2004, 167, 319. [Google Scholar] [CrossRef]
- Sun, S.; Li, D.; Zhang, T.; Ma, Y.; Meng, L.; Deng, T.; Guo, Y. Experimental determination and thermodynamic modeling of solid–liquid equilibria in the system NaCl–Na2SO4–H3BO3–H2O at 323.15 K and its application in industry. J. Chem. Thermodyn. 2022, 170, 106765. [Google Scholar] [CrossRef]
- Mahmoud, S.M.; Wahed, A.; Mohamed, E.A.; Sayed, M.I.E.; M′nif, A.; Sillanpää, M. Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4-H2O. Desalination 2015, 355, 11. [Google Scholar]
- Harvie, C.E.; Weare, J.H.; Hardie, L.A.; Eugster, H.P. Evaporation of Seawater: Calculated Mineral Sequences. Science 1980, 208, 498. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, Y.; Song, J.; Xing, L.; Kong, D.; Li, X.; He, T. Extraction of boron from salt lake brine using 2-ethylhexanol. Hydrometallurgy 2016, 160, 129. [Google Scholar] [CrossRef]
- Ma, Y.; Li, K.; Zhang, Z.; Liu, X. Li+ enrichment behavior in a sodium sulfate and low carbonate salt lake brine. Results Mater. 2020, 7, 100107. [Google Scholar] [CrossRef]
- Bian, S.; Li, D.; Gaoa, D.; Peng, J.; Dong, Y.; Li, W. Hydrometallurgical processing of lithium, potassium, and boron for the comprehensive utilization of Da Qaidam lake brine via natural evaporation and freezing. Hydrometallurgy 2017, 173, 80. [Google Scholar] [CrossRef]
- Nie, Z.; Wu, Q.; Bu, L.; Wang, Y.; Zheng, M. Experimental study of the Tibetan Dangxiong Co salt lake brine during isothermal evaporation at 25 °C. Carbonates Evaporites 2020, 35, 5. [Google Scholar] [CrossRef]
- Cui, R. Solubility measurement and prediction of phase equilibria in the quaternary system LiCl+NaCl+KCl+H2O and ternary subsystem LiCl+NaCl+H2O at 288.15 K. Chin. J. Chem. Eng. 2020, 28, 2137. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, L.; Song, X.; Li, D.; Yang, X.; Meng, L.; Guo, Y.; Deng, T. Thermodynamic Modeling of Boron Species in the Ternary System Na2O-B2O3-H2O at 298.15K. J. Chem. 2020, 6687742. [Google Scholar]
- Yang, L.; Yang, X.; Li, D.; Zhuang, L.; Meng, L.; Deng, T.; Guo, Y. Solubility measurement and thermodynamic modeling of solid–liquid equilibria in quaternary system NaCl–Na2SO4–NaBO2–H2O at 323.15 K. J. Chem. Thermodyn. 2021, 159, 106472. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, C.; Fang, Y.; Zhu, F.; Song, T.; Xu, S. Structure of aqueous sodium metaborate solutions: X-ray diffraction study. Russ. J. Phys. Chem. A. 2012, 86, 1236. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, Y.; Toshio, Y.; Liu, H.; Zhu, F.; Wu, Z. Structure of Aqueous CaCl2 Solutions by X-ray Scattering and Density Functional Theory. Russ. J. Phys. Chem. A. 2022, 96, 68. [Google Scholar] [CrossRef]
- Qinghai Institute of Salt Lakes; Chinese Academy of Sciences. Analysis Methods of Brine and Salt; Science Press: Beijing, China, 1988. [Google Scholar]
- Li, D.; Liu, Y.; Meng, L.; Guo, Y.; Deng, T.; Yang, L. Phase diagrams and thermodynamic modeling of solid-liquid equilibria in the system NaCl–KCl–SrCl2–H2O and its application in industry. J. Chem. Thermodyn. 2019, 136, 1. [Google Scholar] [CrossRef]
- Yang, X.; Gu, S.; Guo, Y.; Deng, T.; Li, D.; Meng, L. Solubility determination and thermodynamic modeling in the quaternary system Li2SO4 – LiBO2 – Li2B4O7 – H2O at T = 308.15 K and p = 0.1 MPa. J. Chem. Thermodyn. 2022, 168, 106729. [Google Scholar] [CrossRef]
- Yuan, F.; Li, H.; Li, L.; Wang, S.; Guo, Y.; Deng, T. Volume properties of the ternary systems (LiCl + LiB5O8 + H2O) and (Li2SO4 + LiB5O8 + H2O) from 283.15 to 363.15 K and 101.325 kPa. J. Chem. Thermodyn. 2022, 172, 106814. [Google Scholar] [CrossRef]
- Mock, B.; Evans, L.B.; Chen, C. Thermodynamic Representation of Phase Equilibria of Mixed-Solvent Electrolyte Systems. AIChE J. 1986, 32, 10. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Zhang, T.; Li, D.; Meng, L.; Deng, T.; Guo, Y. Solubility determination and thermodynamic modeling of solid −liquid equilibria in the LiBO2−Li2B4O7−H2O system at 298.15 K and 323.15 K. Fluid Phase Equilibria 2020, 523, 112783. [Google Scholar] [CrossRef]
- Felmy, A.R.; Weare, J.H. The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California. Geochim. Et Cosmochim. Acta 1986, 50, 2771. [Google Scholar] [CrossRef]
- Cui, W.; Chen, J.; Guo, Y.; Meng, L.; Deng, T. Volumetric properties of the binary system (NaClO3+H2O) and the ternary system (NaClO3+NaCl+H2O) at temperatures from 283.15 to 363.15 K and ambient pressure. J. Mol. Liq. 2020, 306, 112945. [Google Scholar] [CrossRef]
- Debye, P.; Hückel, E. The theory of electrolytes. I. Freezing point depression and related phenomena. Phys. Z. 1923, 24, 185. [Google Scholar]
- Chen, C.C.; Mathias, P.M.; Orbey, H. Use of Hydration and Dissociation Chemistries with the Electrolyte–NRTL Model. AIChE J. 1999, 45, 7. [Google Scholar] [CrossRef]
- Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268. [Google Scholar] [CrossRef] [Green Version]
- Abrams, D.; Prausnitz, J.M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. Aiche. J. 1975, 21, 116. [Google Scholar] [CrossRef]
- Thomsen, K.; Peter, R.; Rafiqul, G. Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems. Chem. Eng. Sci. 1996, 51, 14. [Google Scholar] [CrossRef]
- Sander, B.; Rasmussen, P.; Fredenslund, A. Calculation of vapourliquid equilibria in nitric acid-water-nitrate salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 1986, 41, 5. [Google Scholar]
- Maurer, G.; Prausnitz, J.M. On the Derivation and Exten- sion of the UNIQUAC Equation. Fluid Phase Equilibria 1978, 2. [Google Scholar]
- Cui, R.; Nie, G.; Li, J.; Thomen, K.; Li, W. Prediction of Phase Equilibria of Li–Na–K–Mg–Cl–SO4–H2O System at Multiple Temperatures. J. Salt Lake Res. 2021, 29, 2. [Google Scholar]
- Thomsen, K. Aqueous Electrolytes Model Parameters and Process Simulation. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 1997. [Google Scholar] [CrossRef]
Brine | pH | Density g/cm3 | K+% | Na+% | Li+% | Ca2+% | Mg2+% | Cl−% | CO32−% | SO42−% | B2O3% |
---|---|---|---|---|---|---|---|---|---|---|---|
X0-L0 | 9.318 | 1.0379 | 0.20 | 1.47 | 0.0225 | 0.0012 | 0.08 | 1.09 | 0.23 | 2.19 | 0.22 |
Sample | pH | Density g/cm3 | Water Loss Rate % | Halogen Rate % | Mineralization Rate % |
---|---|---|---|---|---|
X0-L0 | 9.32 | 1.04 | 0.00 | 100.00 | 0.00 |
X0-L10 | 9.16 | 1.11 | 63.16 | 36.84 | 0.00 |
X1-L1 | 9.12 | 1.13 | 68.32 | 31.58 | 0.00 |
X2-L1 | 8.95 | 1.17 | 74.98 | 23.54 | 0.79 |
X3-L1 | 8.77 | 1.22 | 85.20 | 12.85 | 1.95 |
X4-L1 | 8.45 | 1.28 | 88.83 | 9.72 | 1.45 |
X5-L1 | 8.37 | 1.31 | 91.38 | 7.42 | 1.20 |
X6-L1 | 8.36 | 1.33 | 93.60 | 5.73 | 0.67 |
X7-L1 | 8.39 | 1.33 | 94.90 | 4.72 | 0.38 |
X8-L1 | 8.29 | 1.33 | 95.87 | 3.65 | 0.48 |
X9-L1 | 8.23 | 1.33 | 96.69 | 2.98 | 0.33 |
X10-L1 | 8.20 | 1.34 | 97.32 | 2.42 | 0.26 |
X11-L1 | 8.10 | 1.34 | 98.13 | 1.41 | 0.46 |
Sample | K+ | Na+ | Mg2+ | Li+ | Rb+ | Cs+ | Cl- | CO32− | SO42− | B2O3 |
---|---|---|---|---|---|---|---|---|---|---|
X0-L0 | 0.20 | 1.47 | 0.08 | 0.02 | 0.0005 | 0.0007 | 1.09 | 0.23 | 2.19 | 0.22 |
X0-L10 | 0.56 | 3.81 | 0.17 | 0.06 | 0.0016 | 0.0021 | 2.93 | 0.56 | 4.98 | 0.59 |
X1-L1 | 0.64 | 4.40 | 0.25 | 0.07 | 0.0015 | 0.0024 | 3.40 | 0.68 | 6.81 | 0.67 |
X2-L1 | 0.82 | 6.35 | 0.18 | 0.09 | 0.0022 | 0.0030 | 4.51 | 0.68 | 7.67 | 0.73 |
X3-L1 | 1.49 | 10.95 | 0.21 | 0.16 | 0.0040 | 0.0052 | 8.17 | 0.92 | 11.98 | 0.82 |
X4-L1 | 1.87 | 10.68 | 0.18 | 0.19 | 0.0055 | 0.0069 | 10.59 | 0.30 | 9.40 | 0.78 |
X5-L1 | 2.47 | 12.13 | 0.23 | 0.13 | 0.0072 | 0.0083 | 11.92 | 0.36 | 9.04 | 0.98 |
X6-L1 | 2.96 | 12.02 | 0.29 | 0.11 | 0.0090 | 0.0108 | 11.15 | 0.43 | 10.10 | 1.26 |
X7-L1 | 2.88 | 11.83 | 0.34 | 0.10 | 0.0110 | 0.0132 | 10.53 | 0.50 | 9.78 | 1.39 |
X8-L1 | 2.67 | 11.92 | 0.38 | 0.10 | 0.0130 | 0.0160 | 10.58 | 0.50 | 9.87 | 1.49 |
X9-L1 | 2.76 | 11.51 | 0.40 | 0.10 | 0.0141 | 0.0190 | 10.75 | 0.53 | 10.96 | 1.58 |
X10-L1 | 2.96 | 11.45 | 0.46 | 0.10 | 0.0166 | 0.0241 | 11.06 | 0.57 | 11.17 | 1.48 |
X11-L1 | 2.70 | 9.03 | 0.66 | 0.08 | 0.0233 | 0.0371 | 9.13 | 0.66 | 11.58 | 1.61 |
Sample Number | The Results of XRD Analyses |
---|---|
X-S2 | Na2SO4·10H2O, MgCO3·3H2O, Na2B4O7·10H2O |
X-S3 | Na2SO4·10H2O, MgCO3·3H2O |
X-S4 | NaCl, Na2SO4·10H2O, MgCO3·3H2O, Na2B4O7·10H2O |
X-S5 | NaCl, Na2SO4·10H2O, Li2SO4·3Na2SO4·12H2O |
X-S6 | NaCl, Na2SO4·10H2O, Li2SO4·3Na2SO4·12H2O, Na2SO4·3K2SO4 |
X-S7 | NaCl, Li2SO4·3Na2SO4·12H2O, 3K2SO4·Na2SO4 |
X-S8 | NaCl, Li2SO4·3Na2SO4·12H2O, 3K2SO4·Na2SO4 |
X-S9 | NaCl, Li2SO4·3Na2SO4·12H2O, 3K2SO4·Na2SO4 |
X-S10 | NaCl, Li2SO4·3Na2SO4·12H2O, 3K2SO4·Na2SO4, Na2B4O7·10H2O |
X-S11 | NaCl, Li2SO4·3Na2SO4·12H2O, 3K2SO4·Na2SO4, Na2B4O7·10H2O |
Sample | Li+% Enrichment Ratio | B2O3% Enrichment Ratio | Concentration Multiple of Brine |
---|---|---|---|
X0-L0 | 1.00 | 1.00 | 1.00 |
X1-L1 | 3.09 | 3.03 | 3.17 |
X2-L1 | 4.06 | 3.33 | 4.25 |
X3-L1 | 7.02 | 3.73 | 7.78 |
X4-L1 | 8.65 | 3.57 | 10.29 |
X5-L1 | 5.82 | 4.48 | 13.48 |
X6-L1 | 4.76 | 5.72 | 17.46 |
X7-L1 | 4.55 | 6.33 | 21.18 |
X8-L1 | 4.39 | 6.79 | 27.39 |
X9-L1 | 4.48 | 7.17 | 33.59 |
X10-L1 | 4.22 | 6.76 | 41.36 |
Water Loss Rate (%) | Li+ | Na+ | K+ | Cl− | SO42− |
---|---|---|---|---|---|
0.00 | 0.02 | 1.47 | 0.20 | 1.09 | 2.19 |
67.08 | 0.06 | 4.47 | 0.61 | 3.31 | 6.65 |
89.68 | 0.22 | 9.19 | 2.49 | 13.55 | 8.06 |
89.85 | 0.23 | 9.12 | 2.57 | 14.00 | 7.53 |
93.05 | 0.38 | 15.14 | 4.44 | 23.46 | 12.65 |
94.06 | 0.62 | 9.20 | 3.75 | 22.03 | 10.11 |
94.71 | 0.73 | 6.06 | 4.58 | 32.69 | 9.64 |
Water Loss Rate (%) | Precipitated Salt Minerals |
---|---|
67.08 | Na2SO4·10H2O |
89.68 | Na2SO4·10H2O, NaCl, Li2SO4·3Na2SO4·12H2O |
89.85 | NaCl, Li2SO4·3Na2SO4·12H2O, 3K2SO4·Na2SO4 |
93.05 | NaCl, 3K2SO4·Na2SO4, 2Li2SO4·Na2SO4·K2SO4 |
94.06 | NaCl, 2Li2SO4·Na2SO4·K2SO4, KCl |
94.71 | NaCl, KCl, Li2SO4·H2O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, W. Isothermal Evaporations of the Brine from Tibet’s Laguocuo Salt Lake at 15 °C: Experiment and UNIQUAC Simulations. Crystals 2023, 13, 496. https://doi.org/10.3390/cryst13030496
Zhang Y, Li W. Isothermal Evaporations of the Brine from Tibet’s Laguocuo Salt Lake at 15 °C: Experiment and UNIQUAC Simulations. Crystals. 2023; 13(3):496. https://doi.org/10.3390/cryst13030496
Chicago/Turabian StyleZhang, Yongming, and Wu Li. 2023. "Isothermal Evaporations of the Brine from Tibet’s Laguocuo Salt Lake at 15 °C: Experiment and UNIQUAC Simulations" Crystals 13, no. 3: 496. https://doi.org/10.3390/cryst13030496
APA StyleZhang, Y., & Li, W. (2023). Isothermal Evaporations of the Brine from Tibet’s Laguocuo Salt Lake at 15 °C: Experiment and UNIQUAC Simulations. Crystals, 13(3), 496. https://doi.org/10.3390/cryst13030496