Structural, Optical and Dielectric Properties of Holmium-Doped Nickel-Cadmium Ferrite Nanoparticles Synthesized by Sol-Gel Auto-Combustion Method
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Structural Evaluation
3.2. Morphological Investigations
3.3. FT-IR Study
3.4. Dielectric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Pokropivny, V.V.; Skorokhod, V.V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 2007, 27, 990–993. [Google Scholar] [CrossRef]
- Sabri, N.G. The outermembrane proteins profile of Salmonella enterica serotypes Enteritidis, Muenster, Florian, Omuna and Noya and their dendrogram analysis. Int. J. Adv. Res. 2013, 2, 182–187. [Google Scholar]
- Atiq, S.; Majeed, M.; Ahmad, A.; Abbaas, S.K.; Saleem, M.; Riaz, S.; Naseem, S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017, 43, 2486–2494. [Google Scholar] [CrossRef]
- Agayev, F.G.; Trukhanov, S.V.; Trukhanov, A.V.; Jabarov, S.H.; Ayyubova, G.S.; Mirzayev, M.N.; Trukhanov, A.V.; Kozlovskiy, A.L.; Zdorovets, M.V.; Sombra, A.S.B.; et al. Study of structural features and thermal properties of barium hexaferrite upon indium doping. J. Therm. Anal. Calor. 2022, 147, 14107–14114. [Google Scholar] [CrossRef]
- Ditta, A.; Khan, M.A.; Junaid, M.; Khalil, R.M.A.; Warsi, M.F. Structural, magnetic and spectral properties of Gd and Dy codoped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Phys. B 2017, 507, 27–34. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo–Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron. 2021, 32, 16694–16705. [Google Scholar] [CrossRef]
- Jalaiah, K.; Babu, K.V. Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mater. 2017, 423, 275–280. [Google Scholar] [CrossRef]
- Heiba, Z.K.; Mohamed, M.B.; Hamdeh, H.H.; Ahmed, M.A. Structural analysis and cations distribution of nanocrystalline Ni1−xZnxFe1.7Ga0.3O4. J. Alloys Compd. 2015, 618, 755–760. [Google Scholar] [CrossRef]
- Raghunathan, A.; Melikhov, Y.; Snyder, J.E.; Jiles, D.C. Generalized form of anhysteretic magnetization function for Jiles–Atherton theory of hysteresis. Appl. Phys. Lett. 2009, 95, 172510. [Google Scholar] [CrossRef]
- Al-Zahrani, S.A.; Manikandan, A.; Thanrasu, K.; Dinesh, A.; Raja, K.K.; Almessiere, M.A.; Slimani, Y.; Baykal, A.; Bhuminathan, S.; Jayesh, S.R.; et al. Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. Crystals 2022, 12, 268. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Srivastava, R.S.; Misra, R.D.K. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater. Sci. Technol. 2008, 24, 589–595. [Google Scholar] [CrossRef]
- Joshi, H.M.; Lin, Y.P.; Aslam, M.; Prasad, P.V.; Schultz-Sikma, E.A.; Edelman, R.; Dravid, V.P. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 2009, 113, 17761–17767. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Liu, G.; Wang, X.; Zhang, J.; Chen, Y.; Shi, J.; Yang, S. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 2011, 7, 3496–3504. [Google Scholar] [CrossRef]
- Reddy, C.G.; Manorama, S.V.; Rao, V.J. Preparation and characterization of ferrites as gas sensor materials. J. Mater. Sci. Lett. 2000, 19, 775–778. [Google Scholar] [CrossRef]
- Lou, J.-C.; Huang, Y.-J.; Han, J.-Y. Treatment of printed circuit board industrial wastewater by Ferrite process combined with Fenton method. J. Hazard. Mater. 2009, 170, 620–626. [Google Scholar] [CrossRef]
- Valenzuela, R. Magnetic Ceramics; Cambridge University Press: Cambridge, UK, 2005; Volume 4. [Google Scholar]
- Muhammad, F.; Tahir, M.; Zeb, M.; Kalasad, M.N.; Mohd Said, S.; Sarker, M.R.; Sarker, M.R.; Ali, S.H.M. Synergistic enhancement in the microelectronic properties of poly-(dioctylfluorene) based Schottky devices by CdSe quantum dots. Sci. Rep. 2020, 10, 4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; He, Y.; Du, X.; Lin, Q.; Yang, H.; Shen, H. Structural and magnetic studies of Cr3+ substituted nickel ferrite nanomaterials prepared by sol-gel auto-combustion. Crystals 2018, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Bieńkowski, A.; Szewczyc, R. The possibility of utilizing the high permeability magnetic materials in construction of magneto elastic stress and force sensors. Sens. Act. A 2004, 113, 270–276. [Google Scholar] [CrossRef]
- Zhang, G.; Li, C.; Cheng, F.; Chen, J. ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sens. Act. B 2007, 120, 403–410. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Mohd Said, S.; Mohd Sabri, M.F.; Sarker, M.R.; Ali, S.H.M.; Wahab, F. Amplified spontaneous emission and optical gain in organic single crystal quinquethiophene. Crystals 2019, 9, 609. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Hashi, S.; Ishiyama, K.; Arai, K.I.; Inoue, M. Remote temperature sensing system using reverberated magnetic flux . IEEE Trans. Magn. 2000, 36, 3643–3645. [Google Scholar] [CrossRef]
- Osada, H.; Chiba, S.; Oka, H.; Hatafuku, H.; Tayama, N.; Seki, K. Non-contact magnetic temperature sensor for biochemical applications. J. Magn. Magn. Mater. 2004, 272–276, 1761–1762. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 2005, 309, 391–392. [Google Scholar] [CrossRef]
- Petrila, I.; Tudorache, F. The influence of Li+ and K+ added cations and annealing temperature on the magnetic and dielectric properties of Mg-Zn ferrite. Materials 2021, 14, 4916. [Google Scholar] [CrossRef] [PubMed]
- Shelar, M.; Jadhav, P.; Chougule, S.; Mallapur, M.; Chougule, B. Structural and electrical properties of nickel cadmium ferrites prepared. J. Alloy. Compd. 2009, 476, 760–764. [Google Scholar] [CrossRef]
- Patange, S.; Shirsath, S.; Toksha, B.; Jadhav, S.; Jadhav, K. Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 2009, 106, 023914. [Google Scholar] [CrossRef]
- Shinde, T.; Gadkari, A.; Vasambekar, P. Influence of Nd3+ substitution on structural, electrical and magnetic properties of nonocrystalline nickel ferrties. J. Alloy. Compd. 2012, 513, 80–85. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Algarou, N.A.; Vakhitov, M.G.; Klygach, D.S.; Baykal, A.; Zubar, T.I.; Trukhanov, S.A.; Trukhanov, A.V.; Attia, H. Tuning the Structure, Magnetic, and High Frequency Properties of Sc-Doped Sr0.5Ba0.5ScxFe12-xO19/NiFe2O4 Hard/Soft Nanocomposites. Adv. Electron. Mater. 2022, 8, 2101124. [Google Scholar] [CrossRef]
- Amiri, A.; Ghaemi, F. Solid-phase extraction of non-steroidal anti-inflammatory drugs in human plasma and water samples using sol-gel-based metal-organic framework coating. J. Chromatogr. A 2021, 1648, 462168. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Shlimas, D.I.; Zdorovets, M.V. Synthesis, structural properties and shielding efficiency of glasses based on TeO2-(1-x)ZnO-xSm2O3. J. Mater. Sci. Mater. Electron. 2021, 32, 12111–12120. [Google Scholar] [CrossRef]
- Kadyrzhanov, K.K.; Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater. Electron. 2020, 31, 11729–11740. [Google Scholar] [CrossRef]
- El-Shater, R.E.; El Shimy, H.; Saafan, S.A.; Darwish, M.A.; Zhou, D.; Trukhanov, A.V.; Trukhanov, S.V.; Fakhry, F. Synthesis, characterization, and magnetic properties of Mn nanoferrites. J. Alloy. Compd. 2022, 928, 166954. [Google Scholar] [CrossRef]
- Fatah, A.F.; Mohamad, A.A.; Muchtar, A.; Hamid, N.A. Physical characterization of LSCF-CuO via enhanced modified sol-gel method for intermediate temperature Solid oxide Fuel Cells (IT-SOFCs). Mater. Today Proc. 2021, 46, 2052–2057. [Google Scholar] [CrossRef]
- Pujar, P.; Pal, A.; Mandal, S. Combustion aided in situ consolidation of high strength porous ceramic structures with a minimum thermal budget. Mater. Lett. 2020, 265, 127410. [Google Scholar] [CrossRef]
- Jamil, N.H.J.; Zainuddin, Z.; Jumali, M.H.H.; Izzuddin, I.; Nadzir, L. Tetragonal tungsten bronze phase potential in increasing the piezoelectricity of sol-gel synthesized (K0.5Na0.5)1-xLixNbO3 ceramics. Ceram. Int. 2022, 48, 9324–9329. [Google Scholar] [CrossRef]
- Peng, Z.; Fu, X.; Ge, H.; Fu, Z.; Wang, C.; Qi, L.; Miao, H. Effect of Pr3+ doping on magnetic and dielectric properties of Ni–Zn ferrites by one-step synthesis. J. Magn. Magn. Mater. 2011, 323, 2513–2518. [Google Scholar] [CrossRef]
- Xiang, J.; Shen, X.; Zhu, Y. Effects of Ce3+ doping on the structure and magnetic properties of Mn-Zn ferrite fibers. Rare Met. 2009, 28, 151–155. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Fawzan, F.F.; Almufarij, R.S.; Abd-Elkader, O.H.; Deraz, N.M. Biosynthesis, Physicochemical and Magnetic Properties of Inverse Spinel Nickel Ferrite System. Crystals 2022, 12, 1542. [Google Scholar] [CrossRef]
- Patil, K.C. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications; World Scientific: Singapore, 2008. [Google Scholar]
- Pujar, P.; Gupta, B.; Sengupta, P.; Gupta, D.; Mandal, S. Sodium ion incorporated alumina-A versatile anisotropic ceramic. J. Eur. Ceram. Soc. 2019, 39, 4473–4486. [Google Scholar] [CrossRef]
- Ali, A.; Jameel, M.H.; Uddin, S.; Zaman, A.; Iqbal, Z.; Gul, Q.; Sultana, F.; Mushtaq, M.; Althubeiti, K.; Ullah, R. The Effect of Ca Dopant on the Electrical and Dielectric Properties of BaTi4O9 Sintered Ceramics. Materials 2021, 14, 5375. [Google Scholar] [CrossRef]
- Hamza, M.; ur Rehman, A.; Ali, I.; Asif, M.; Ahmad, M. Detailed analysis of lanthanum impact on structural, morphological and magnetic properties of manganese spinel ferrites (MnLaxFe2-xO4 x = (0.0, 0.1, 0.2) synthesized through hydrothermal technique. J. Magn. Magn. Mater. 2022, 564, 169852. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Gul, Z.; Wahab, F.; Sarker, M.R.; Ali, S.; Alamgeer; Ilyas, S.Z.; Ali, S. Pyrrol-Anthracene: Synthesis, Characterization and Its Application as Active Material in Humidity, Temperature and Light Sensors. Coatings 2022, 12, 848. [Google Scholar] [CrossRef]
- Abbas, M.; Ullah, R.; Ullah, K.; Sultana, F.; Mahmood, A.; Mateen, A.; Zhang, Y.; Ali, A.; Althubeiti, K.; Mushtaq, M.; et al. Structural, optical, electrical and dielectric properties of (Sr1-xMgx)(Sn0.5Ti0.5)O3(x = 0.00, 0.25, 0.50, 0.75) ceramics via solid state route. Ceram. Int. 2021, 47, 30129–30136. [Google Scholar] [CrossRef]
- Dubey, H.K.; Lahiri, P. The effect of dysprosium on nickel-cadmium spinel ferrites. Phase Trans. 2021, 94, 842–855. [Google Scholar] [CrossRef]
- Chethan, B.; Raj Prakash, H.G.; Vijayakumari, S.C.; Ravikiran, Y.T. Structural and electrical properties of nickel substituted cadmium ferrite. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1953, p. 090028. [Google Scholar]
- Afzal, A.B.; Akhtar, M.J.; Nadeem, M.; Hassan, M.M. Investigation of structural and electrical properties of polyaniline/gold nanocomposites. J. Phys. Chem. C 2009, 113, 17560–17565. [Google Scholar] [CrossRef]
Sample Name | Interplanar Distance (d) Å | Lattice Constant (a) (Å) | Crystal Size (D) (nm) | Volume (Å)3 | X-ray Density (ρ) (g/cm3) |
---|---|---|---|---|---|
Ni0.5Cd0.5Fe2O4 | 2.5433 | 8.4351 | 11 | 600.16 | 5.7841 |
Ni0.5Cd0.5 Ho0.02Fe1.98O4 | 2.5418 | 8.4301 | 10 | 599.09 | 5.8431 |
Ni0.5Cd0.5Ho0.04 Fe1.96O4 | 2.5362 | 8.4116 | 13 | 595.16 | 5.8912 |
Sample | Grain Size (nm) |
---|---|
Ni0.5Cd0.5Fe2O4 | 54.47 |
Ni0.5Cd0.5 Ho0.02 Fe1.98O4 | 57.31 |
Ni0.5Cd0.5Ho0.04 Fe1.96O4 | 58.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, D.; Ali, A.; Abbas, Z.; Zaman, A.; Alsuhaibani, A.M.; Tirth, V.; Sarker, M.R.; Kamari, N.A.M.; Algahtani, A.; Aljohani, M. Structural, Optical and Dielectric Properties of Holmium-Doped Nickel-Cadmium Ferrite Nanoparticles Synthesized by Sol-Gel Auto-Combustion Method. Crystals 2023, 13, 495. https://doi.org/10.3390/cryst13030495
Ahmad D, Ali A, Abbas Z, Zaman A, Alsuhaibani AM, Tirth V, Sarker MR, Kamari NAM, Algahtani A, Aljohani M. Structural, Optical and Dielectric Properties of Holmium-Doped Nickel-Cadmium Ferrite Nanoparticles Synthesized by Sol-Gel Auto-Combustion Method. Crystals. 2023; 13(3):495. https://doi.org/10.3390/cryst13030495
Chicago/Turabian StyleAhmad, Danyal, Asad Ali, Zahid Abbas, Abid Zaman, Amnah Mohammed Alsuhaibani, Vineet Tirth, Mahidur R. Sarker, Nor Azwan Mohamed Kamari, Ali Algahtani, and Mohammed Aljohani. 2023. "Structural, Optical and Dielectric Properties of Holmium-Doped Nickel-Cadmium Ferrite Nanoparticles Synthesized by Sol-Gel Auto-Combustion Method" Crystals 13, no. 3: 495. https://doi.org/10.3390/cryst13030495
APA StyleAhmad, D., Ali, A., Abbas, Z., Zaman, A., Alsuhaibani, A. M., Tirth, V., Sarker, M. R., Kamari, N. A. M., Algahtani, A., & Aljohani, M. (2023). Structural, Optical and Dielectric Properties of Holmium-Doped Nickel-Cadmium Ferrite Nanoparticles Synthesized by Sol-Gel Auto-Combustion Method. Crystals, 13(3), 495. https://doi.org/10.3390/cryst13030495