Amine-Terminated Modified Succinic Acid-Magnetite Nanoparticles for Effective Removal of Malachite Green Dye from Aqueous Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Magnetic Nanocomposite (MSA@TEPA)
2.3. Adsorption Experiments
3. Results
3.1. Characterization of MSA@TPEA
3.2. Optimization of Adsorption Process Conditions
3.2.1. Effect of pH
3.2.2. Effect of Adsorbent Dosage
3.2.3. Effect of Contact Time
3.2.4. Effect of Initial Concentration and Temperature
3.3. Adsorption Modeling
3.3.1. Adsorption Isotherm
3.3.2. Adsorption Kinetic
3.3.3. Adsorption Thermodynamics
3.4. Proposed Adsorption Mechanism
3.5. Reusability of MSA@TEPA
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, S.; Mukherjee, A.; Das, S.; Maddela, N.R.; Iram, S.; Das, P. Study on isotherm, kinetics, and thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash. Environ. Eng. Res. 2021, 26, 190372. [Google Scholar] [CrossRef]
- Alomar, T.S.; Al Masoud, N.; Sharma, G.; ALOthman, Z.A.; Naushad, M. Incorporation of trimetallic nanoparticles to the SiO2 matrix for the removal of methylene blue dye from aqueous medium. J. Mol. Liq. 2021, 336, 116274. [Google Scholar] [CrossRef]
- Naushad, M.; Alqadami, A.A.; Al-Kahtani, A.A.; Ahamad, T.; Awual, M.R.; Tatarchuk, T. Adsorption of textile dye using para-aminobenzoic acid modified activated carbon: Kinetic and equilibrium studies. J. Mol. Liq. 2019, 296, 112075. [Google Scholar] [CrossRef]
- Faisal, A.A.H.; Shihab, A.H.; Naushad, M.; Ahamad, T.; Sharma, G.; Al-Sheetan, K.M. Green synthesis for novel sorbent of sand coated with (Ca/Al)-layered double hydroxide for the removal of toxic dye from aqueous environment. J. Environ. Chem. Eng. 2021, 9, 105342. [Google Scholar] [CrossRef]
- Wang, K.; Wang, K.; Chen, Y.; Liang, S.; Guo, C.; Wang, W.; Wang, J. Adsorption–desorption behavior of malachite green by potassium permanganate pre-oxidation polyvinyl chloride microplastics. Environ. Technol. Innov. 2023, 30, 103138. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Alothman, Z.A.; Ahamad, T. Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism. J. Environ. Manag. 2018, 223, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Sun, L.; Huang, Z.; Chen, Z.; Xu, Z.; Ruan, G.; Zhao, C. Electrospun reduced graphene oxide/TiO2/poly(acrylonitrile-co-maleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 2020, 239, 124764. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Ahmad, M.A.; Yahaya, N.K.E.M.; Karim, J. Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arab. J. Chem. 2021, 14, 103104. [Google Scholar] [CrossRef]
- Gopinathan, R.; Kanhere, J.; Banerjee, J. Effect of malachite green toxicity on non target soil organisms. Chemosphere 2015, 120, 637–644. [Google Scholar] [CrossRef]
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Ahmed Alshareef, S.; Abdullah Alqadami, A.; Ali Khan, M.; Alanazi, H.S.; Raza Siddiqui, M.; Jeon, B.-H. Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation. Bioresour. Technol. 2022, 347, 126363. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Alqadami, A.A.; Wabaidur, S.M.; Jeon, B.-H. Co-Carbonized Waste Polythene/Sugarcane Bagasse Nanocomposite for Aqueous Environmental Remediation Applications. Nanomaterials 2023, 13, 1193. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.S.; Hossain, M.M.; Lee, J.; Suhr, J.; Kim, K. Crosslinked 3D porous composite foams as adsorbents for efficient organic dye removal. Environ. Technol. Innov. 2023, 29, 102986. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Abd-Elhamid, A.I.; Aly, A.A.; Bräse, S.; Nayl, A.A. Synthesis of Ni-Fe-CO3 layered double hydroxide as Effective Adsorbent to remove Cr(VI) and ARS-dye from aqueous media. Environ. Technol. Innov. 2023, 31, 103214. [Google Scholar] [CrossRef]
- Majdoubi, H.; Alqadami, A.A.; Billah, R.E.; Otero, M.; Jeon, B.-H.; Hannache, H.; Tamraoui, Y.; Khan, M.A. Chitin-Based Magnesium Oxide Biocomposite for the Removal of Methyl Orange from Water. Int. J. Environ. Res. Public. Health 2023, 20, 831. [Google Scholar] [CrossRef] [PubMed]
- Şen, F.; Demirbaş, Ö.; Çalımlı, M.H.; Aygün, A.; Alma, M.H.; Nas, M.S. The dye removal from aqueous solution using polymer composite films. Appl. Water Sci. 2018, 8, 206. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mohamed, A.S. Adsorption removal of safranin dye contaminants from water using various types of natural zeolite. Silicon 2019, 11, 1635–1647. [Google Scholar] [CrossRef]
- Corda, N.C.; Kini, M.S. A review on adsorption of cationic dyes using activated carbon. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 144, p. 2022. [Google Scholar] [CrossRef]
- Nistor, M.A.; Muntean, S.G.; Maranescu, B.; Visa, A. Phosphonate metal–organic frameworks used as dye removal materials from wastewaters. Appl. Organomet. Chem. 2020, 34, e5939. [Google Scholar] [CrossRef]
- Ekka, B.; Nayak, S.R.; Dash, P.; Patel, R.K. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid. AIP Conf. Proc. 2016, 1724, 20011. [Google Scholar] [CrossRef]
- Romzi, A.A.; Kooh, M.R.R.; Lim, L.B.L.; Priyantha, N.; Chan, C.M. Environmentally friendly adsorbent derived from rock melon skin for effective removal of toxic brilliant green dye: Linear versus non-linear analyses. Int. J. Environ. Anal. Chem. 2021, 101, 1–20. [Google Scholar] [CrossRef]
- Mohamad Zaidi, N.A.H.; Sallehuddin, F.N.; Lim, L.B.L.; Kooh, M.R.R. Surface modification of Artocarpus odoratissimus leaves using NaOH, SDS and EDTA to enhance adsorption of toxic crystal violet dye. Int. J. Environ. Anal. Chem. 2023, 103, 1836–1854. [Google Scholar] [CrossRef]
- Shaikh, W.A.; Kumar, A.; Chakraborty, S.; Naushad, M.; Islam, R.U.; Bhattacharya, T.; Datta, S. Removal of toxic dye from dye-laden wastewater using a new nanocomposite material: Isotherm, kinetics and adsorption mechanism. Chemosphere 2022, 308, 136413. [Google Scholar] [CrossRef] [PubMed]
- Hotan Alsohaimi, I.; Alhumaimess, M.S.; Abdullah Alqadami, A.; Tharwi Alshammari, G.; Fawzy Al-Olaimi, R.; Abdeltawab, A.A.; El-Sayed, M.Y.; Hassan, H.M. Adsorptive performance of aminonaphthalenesulfonic acid modified magnetic-graphene oxide for methylene blue dye: Mechanism, isotherm and thermodynamic studies. Inorg. Chem. Commun. 2023, 147, 110261. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Abdalla, M.A.; Khan, M.R. Adsorptive Removal of Toxic Dye Using Fe3O4—TSC Nanocomposite: Equilibrium, Kinetic, and Thermodynamic Studies. J. Chem. Eng. Data 2016, 61, 3806–3813. [Google Scholar] [CrossRef]
- Amiri, M.; Salavati-Niasari, M.; Akbari, A.; Gholami, T. Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: Herbal and green sol-gel autocombustion synthesis. Int. J. Hydrog. Energy 2017, 42, 24846–24860. [Google Scholar] [CrossRef]
- Zadvarzi, S.B.; Khavarpour, M.; Vahdat, S.M.; Baghbanian, S.M.; Rad, A.S. Synthesis of Fe3O4@chitosan@ZIF-8 towards removal of malachite green from aqueous solution: Theoretical and experimental studies. Int. J. Biol. Macromol. 2021, 168, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Burbano, A.A.; Gascó, G.; Horst, F.; Lassalle, V.; Méndez, A. Production, characteristics and use of magnetic biochar nanocomposites as sorbents. Biomass Bioenergy 2023, 172, 106772. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, X.; Li, X.; Jia, X.; Liang, S.; Qian, L. Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater. Chem. Phys. 2020, 240, 122240. [Google Scholar] [CrossRef]
- Mohammadi, A.; Daemi, H.; Barikani, M. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. Int. J. Biol. Macromol. 2014, 69, 447. [Google Scholar] [CrossRef]
- Karnitz, O.; Gurgel, L.V.A.; de Melo, J.C.P.; Botaro, V.R.; Melo, T.M.S.; de Freitas Gil, R.P.; Gil, L.F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 2007, 98, 1291–1297. [Google Scholar] [CrossRef]
- Gurgel, L.V.A.; Júnior, O.K.; Gil, R.P.d.F.; Gil, L.F. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour. Technol. 2008, 99, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wei, Q.; Du, B.; Zhang, Y.; Xin, X.; Yan, L.; Yu, H. Removal of basic dyes (malachite green) from aqueous medium by adsorption onto amino functionalized graphenes in batch mode. Desalin Water Treat. 2015, 53, 818–825. [Google Scholar] [CrossRef]
- Patil, M.R.; Shrivastava, V.S. Adsorption of malachite green by polyaniline–nickel ferrite magnetic nanocomposite: An isotherm and kinetic study. Appl. Nanosci. 2015, 5, 809–816. [Google Scholar] [CrossRef]
- Ali, I.; Peng, C.; Ye, T.; Naz, I. Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Adv. 2018, 8, 8878–8897. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-R.; Ivanova, O.S.; Petrov, D.A.; Sokolov, A.E.; Chen, Y.-Z.; Gerasimova, M.A.; Zharkov, S.M.; Tseng, Y.-T.; Shestakov, N.P.; Edelman, I.S. Amino-Functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanoparticles for Dye Adsorption. Nanomaterials 2021, 11, 2371. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Volesky, B. Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 2003, 71, 209–215. [Google Scholar] [CrossRef]
- Hozhabr Araghi, S.; Entezari, M.H. Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution. Appl. Surf. Sci. 2015, 333, 68–77. [Google Scholar] [CrossRef]
- Sun, L.; Hu, S.; Sun, H.; Guo, H.; Zhu, H.; Liu, M.; Sun, H. Malachite green adsorption onto Fe3O4@SiO2-NH2: Isotherms, kinetic and process optimization. RSC Adv. 2015, 5, 11837–11844. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, F.; Xu, K.; Che, Y.; Qi, M.; Song, C. Modified magnetic chitosan materials for heavy metal adsorption: A review. RSC Adv. 2023, 13, 6713–6736. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, L.; Lu, Y.; Li, H.; Wang, S.; Yuan, H.; Liu, X.; Wang, C.; Zhu, X.; Lu, J. Tetraethylenepentamine modified magnetic cellulose nanocrystal composites for removal of Congo red with high adsorption capacity. J. Dispers. Sci. Technol. 2022, 43, 1858–1871. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, K.; Liu, Q.; Liu, Q.; Yao, J. Green and simple synthesis of poly (catechol-tetraethylenepentamine)@aminopropyl-modified silica composite for removing toxic Cr(VI). J. Taiwan. Inst. Chem. Eng. 2020, 110, 112–119. [Google Scholar] [CrossRef]
- Ghasemi, M.; Mashhadi, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye. J. Mol. Liq. 2016, 213, 317–325. [Google Scholar] [CrossRef]
- Saepudin, E.; Fadhilah, H.R.; Khalil, M. The influence of carboxylate moieties for efficient loading and pH-controlled release of doxorubicin in Fe3O4 magnetic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125137. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Alothman, Z.A.; Ghfar, A.A. Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment. ACS Appl. Mater. Interfaces 2017, 9, 36026–36037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Hu, X.; Feng, H.; Xiong, W.; Guo, W.; Zhou, J.; Mosa, A.; Peng, Y. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal. J. Clean. Prod. 2019, 231, 733–745. [Google Scholar] [CrossRef]
- Naushad, M.; Alqadami, A.A.; Ahamad, T. Removal of Cd(II) ion from aqueous environment using triaminotriethoxysilane grafted oxidized activated carbon synthesized via activation and subsequent silanization. Environ. Technol. Innov. 2020, 18, 100686. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II). Appl. Surf. Sci. 2017, 420, 970–981. [Google Scholar] [CrossRef]
- Cai, W.; Tan, L.; Yu, J.; Jaroniec, M.; Liu, X.; Cheng, B.; Verpoort, F. Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2. Chem. Eng. J. 2014, 239, 207–215. [Google Scholar] [CrossRef]
- Krishna Murthy, T.P.; Gowrishankar, B.S.; Krishna, R.H.; Chandraprabha, M.N.; Mathew, B.B. Magnetic modification of coffee husk hydrochar for adsorptive removal of methylene blue: Isotherms, kinetics and thermodynamic studies. Environ. Chem. Ecotoxicol. 2020, 2, 205–212. [Google Scholar] [CrossRef]
- Thangaraj, B.; Jia, Z.; Dai, L.; Liu, D.; Du, W. Lipase NS81006 immobilized on Fe3O4 magnetic nanoparticles for biodiesel production. Ovidius Univ. Ann. Chem. 2016, 27, 13–21. [Google Scholar] [CrossRef]
- Li, Z.; Chen, K.; Chen, Z.; Li, W.; Biney, B.W.; Guo, A.; Liu, D. Removal of malachite green dye from aqueous solution by adsorbents derived from polyurethane plastic waste. J. Environ. Chem. Eng. 2021, 9, 104704. [Google Scholar] [CrossRef]
- Ramadan, H.S.; Ali, R.A.M.; Mobarak, M.; Badawi, M.; Selim, A.Q.; Mohamed, E.A.; Bonilla-Petriciolet, A.; Seliem, M.K. One-step fabrication of a new outstanding rutile TiO2 nanoparticles/anthracite adsorbent: Modeling and physicochemical interpretations for malachite green removal. Chem. Eng. J. 2021, 426, 131890. [Google Scholar] [CrossRef]
- Rout, D.R.; Jena, H.M. Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Mater. Today Proc. 2021, 47, 1173–1182. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, J.; Zhou, J.; Lei, J. Study on adsorption of methylene blue by a novel composite material of TiO2 and alum sludge. RSC Adv. 2018, 8, 32799–32807. [Google Scholar] [CrossRef]
- Sahraei, R.; Hemmati, K.; Ghaemy, M. Adsorptive removal of toxic metals and cationic dyes by magnetic adsorbent based on functionalized graphene oxide from water. RSC Adv. 2016, 6, 72487–72499. [Google Scholar] [CrossRef]
- Aldawsari, A.M.; Alsohaimi, I.H.; Al-Kahtani, A.A.; Alqadami, A.A.; Ali Abdalla, Z.E.; Saleh, E.A.M. Adsorptive performance of aminoterephthalic acid modified oxidized activated carbon for malachite green dye: Mechanism, kinetic and thermodynamic studies. Sep. Sci. Technol. 2021, 56, 835–846. [Google Scholar] [CrossRef]
- Melhi, S.; Algamdi, M.; Alqadami, A.A.; Khan, M.A.; Alosaimi, E.H. Fabrication of magnetically recyclable nanocomposite as an effective adsorbent for the removal of malachite green from water. Chem. Eng. Res. Des. 2022, 177, 843–854. [Google Scholar] [CrossRef]
- Wallis, A.; Dollard, M.F. Local and global factors in work stress—The Australian dairy farming examplar. Scand. J. Work Environ. Health Suppl. 2008, 34, 66–74. [Google Scholar]
- Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385. [CrossRef]
- Dubinin, M.M. The Equation of the Characteristic Curve of Activated Charcoal Proceedings of the Academy of Sciences. Phys. Chem. Sect. 1947, 55, 331. [Google Scholar]
- Hua, Y.; Xu, D.; Liu, Z.; Zhou, J.; Han, J.; Lin, Z.; Xu, D.; Chen, G.; Huang, X.; Chen, J.; et al. Effective adsorption and removal of malachite green and Pb2+ from aqueous samples and fruit juices by pollen–inspired magnetic hydroxyapatite nanoparticles/hydrogel beads. J. Clean. Prod. 2023, 411, 137233. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Sharkawy, R.M.; Ibrahim, G.A.A. A novel bionanocomposite from doped lipase enzyme into magnetic graphene oxide-immobilized-cellulose for efficient removal of methylene blue and malachite green dyes. J. Mol. Liq. 2022, 368, 120676. [Google Scholar] [CrossRef]
- Li, W.; Xu, M.; Cao, Q.; Luo, J.; Yang, S.; Zhao, G. Magnetic GO/Fe3O4 for rapid malachite green (MG) removal from aqueous solutions: A reversible adsorption. RSC Adv. 2021, 11, 19387–19394. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, J.; Dey, B.; Dey, S. Magnetic Cobalt Oxide Nanoparticles: Sucrose-Assisted Self-Sustained Combustion Synthesis, Characterization, and Efficient Removal of Malachite Green from Water. J. Chem. Eng. Data 2020, 65, 2819–2829. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Handlingar 1898, 24, 1–39. [Google Scholar]
- Chien, S.H.; Clayton, W.R. The catalytic oxidation of carbon monoxide on manganese dioxide. Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Jayasantha Kumari, H.; Krishnamoorthy, P.; Arumugam, T.K.; Radhakrishnan, S.; Vasudevan, D. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent. Int. J. Biol. Macromol. 2017, 96, 324–333. [Google Scholar] [CrossRef]
- Mirza, A.; Ahmad, R. An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: A novel and ecofriendly adsorbent. Groundw. Sustain. Dev. 2020, 11, 100373. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Machado, F.M.; Bergmann, C.P.; Fernandes, T.H.M.; Lima, E.C.; Royer, B.; Calvete, T.; Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 2011, 192, 1122–1131. [Google Scholar] [CrossRef]
- Erwa, I.Y.; Ishag, O.A.; Alrefaei, O.A.; Hassan, I.M. Nonlinear Fitting for Estimation of Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Methylene Blue onto Activated Carbon. J. Turk. Chem. Soc. Sect. A Chem. 2022, 9, 67–84. [Google Scholar] [CrossRef]
Model | MG Dye | ||
---|---|---|---|
298 K | 308 K | 318 K | |
Langmuir | |||
qm, mg/g | 282.65 | 267.6503 | 240.50 |
KL (L/mg) | 0.071 | 0.042 | 0.029 |
RL | 0.360 | 0.487 | 0.579 |
R2 | 0.99314 | 0.98715 | 0.99509 |
Freundlich | |||
Kf, (mg/g) (L/mg)1/n | 51.51 | 36.39 | 26.11 |
n | 2.91 | 2.62 | 2.46 |
R2 | 0.96181 | 0.96088 | 0.96888 |
Dubinin–R | |||
qs, mg/g | 232.9 | 205.0 | 179.24 |
KD-R (mol2 KJ−2) | 27.28 | 49.78 | 80.55 |
E (kJ mol−1) | 0.135 | 0.100 | 0.053 |
R2 | 0.8876 | 0.82899 | 0.87887 |
Co (mg/L) | qe,exp. (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | Elovich | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe,cal. (mg/g) | K1 (1/min) | R2 | qe2,cal. (mg/g) | K2 (g/mg-min) | R2 | A (mg/g min) | B (mg/g) | R2 | ||
25 | 61.23 | 57.21 | 0.023 | 0.9448 | 63.36 | 0.00053 | 0.9871 | 6.42 | 0.089 | 0.9731 |
ΔH° (kJ/mol) | ΔS° (J/mol.K) | ΔG° (kJ/mol) | ||
---|---|---|---|---|
298 K | 308 K | 318 K | ||
−34.76 | −32.29 | −25.19 | −24.71 | −24.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melhi, S. Amine-Terminated Modified Succinic Acid-Magnetite Nanoparticles for Effective Removal of Malachite Green Dye from Aqueous Environment. Crystals 2023, 13, 1301. https://doi.org/10.3390/cryst13091301
Melhi S. Amine-Terminated Modified Succinic Acid-Magnetite Nanoparticles for Effective Removal of Malachite Green Dye from Aqueous Environment. Crystals. 2023; 13(9):1301. https://doi.org/10.3390/cryst13091301
Chicago/Turabian StyleMelhi, Saad. 2023. "Amine-Terminated Modified Succinic Acid-Magnetite Nanoparticles for Effective Removal of Malachite Green Dye from Aqueous Environment" Crystals 13, no. 9: 1301. https://doi.org/10.3390/cryst13091301
APA StyleMelhi, S. (2023). Amine-Terminated Modified Succinic Acid-Magnetite Nanoparticles for Effective Removal of Malachite Green Dye from Aqueous Environment. Crystals, 13(9), 1301. https://doi.org/10.3390/cryst13091301