Supramolecular Assemblies of Melamine-2-Thiobarbiturate and Melamine-Barbiturate-2-Thiobarbiturate: Experimental and Theoretical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation
2.3. Microluminescence Spectra
2.4. Microscopy
2.5. Powder X-ray Diffraction
2.6. Single Crystal X-ray Diffraction
2.7. Solid-State Nuclear Magnetic Resonance
2.8. Quantum Chemical Computations
2.9. Molecular Dynamics Simulation Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherrington, D.C.; Taskinen, K.A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem. Soc. Rev. 2001, 30, 83–93. [Google Scholar] [CrossRef]
- Lenthall, J.T.; Foster, J.A.; Anderson, K.M.; Probert, M.R.; Howard, J.A.K.; Steed, J.W. Hydrogen bonding interactions with the thiocarbonyl π-system. CrystEngComm 2011, 13, 3202–3212. [Google Scholar] [CrossRef]
- Chand, A.; Sahoo, D.K.; Rana, A.; Jena, S.; Biswal, H.S. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc. Chem. Res. 2020, 53, 1580–1592. [Google Scholar] [CrossRef] [PubMed]
- Mundlapati, V.R.; Gautam, S.; Sahoo, D.K.; Ghosh, A.; Biswal, H.S. Thioamide, a Hydrogen Bond Acceptor in Proteins and Nucleic Acids. J. Phys. Chem. Lett. 2017, 8, 4573–4579. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hilgeroth, P.; Hasan, N.; Ströhl, D.; Kressler, J.; Binder, W.H. Comparing C2=O and C2=S Barbiturates: Different Hydrogen-Bonding Patterns of Thiobarbiturates in Solution and the Solid State. Int. J. Mol. Sci. 2021, 22, 12679. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Olyaei, A.; Sadeghpour, M. Barbituric acids in the synthesis of naphthopyranopyrimidines: A brief review. Synth. Commun. 2022, 52, 2179–2197. [Google Scholar]
- Bhatt, R.; Kushwaha, S.; Bojja, S.; Padmaja, P. Chitosan–Thiobarbituric Acid: A Superadsorbent for Mercury. ACS Omega 2018, 3, 13183–13194. [Google Scholar] [CrossRef]
- Jindal, G.; Kaur, N. Barbituric acid appended fluorescent sensor for the detection of Cu2+/Hg2+ ions along with real-life utility in recognition of malathionin food samples and fingerprint imaging. J. Photochem. Photobiol. A Chem. 2023, 434, 114238. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Luo, Q.; Li, X.; Zhu, W. Supramolecular polymeric prodrug micelles for efficient anticancer drug delivery. Polym. Chem. 2022, 13, 2980–2987. [Google Scholar] [CrossRef]
- Brahmachari, G.; Bhowmick, A.; Karmakar, I. Catalyst- and Additive-Free C(sp3)-H Functionalization of (Thio)barbituric Acids via C-5 Dehydrogenative Aza-Coupling under Ambient Conditions. ACS Omega 2022, 7, 30051–30063. [Google Scholar] [CrossRef] [PubMed]
- Chierotti, M.R.; Ferrero, L.; Garino, N.; Gobetto, R.; Pellegrino, L.; Braga, D.; Grepioni, F.; Maini, L. The richest collection of tautomeric polymorphs: The case of 2-thiobarbituric acid. Chem. A Eur. J. 2010, 16, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Kadoma, Y.; Fujisawa, S. Radical-scavenging activity of thiols, thiobarbituric acid derivatives and phenolic antioxidants determined using the induction period method for radical olymerization of methyl methacrylate. Polymers 2012, 4, 1025–1036. [Google Scholar] [CrossRef]
- Sharma, A.; Zamisa, S.J.; Noki, S.; Almarhoon, Z.; El-Faham, A.; la Torre, B.G.d.; Albericio, F. Crystal structure, spectroscopic studies and theoretical studies of thiobarbituric acid derivatives: Understanding the hydrogen-bonding patterns. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Emara, R.; Masoud, M.S.; Abboudy, S. Optical, electrical, thermal and kinetic studies for some pyrimidine ligands and their complexes. J. Non. Cryst. Solids 2022, 597, 121873. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Maharramov, A.M.; Kurbanova, M.M.; Gurbanov, A.V.; Pombeiro, A.J.L. Barbituric acids as a useful tool for the construction of coordination and supramolecular compounds. Coord. Chem. Rev. 2014, 265, 1–37. [Google Scholar] [CrossRef]
- Aizawa, T.; Kawaura, M.; Kajitani, T.; Hengphasatporn, K.; Shigeta, Y.; Yagai, S. Supramolecular polymerization of thiobarbituric acid naphthalene dye. Chem. Commun. 2022, 58, 9365–9368. [Google Scholar] [CrossRef] [PubMed]
- Kawaura, M.; Aizawa, T.; Takahashi, S.; Miyasaka, H.; Sotome, H.; Yagai, S. Fluorescent supramolecular polymers of barbiturate dyes with thiophene-cored twisted π-systems. Chem. Sci. 2022, 13, 1281–1287. [Google Scholar] [CrossRef]
- Hützler, W.M.; Bolte, M. Sulfur as hydrogen-bond acceptor in cocrystals of 2-thio-modified thymine. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74, 21–30. [Google Scholar] [CrossRef]
- Marshall, M.G.; Lopez-Diaz, V.; Hudson, B.S. Single-Crystal X-ray Diffraction Structure of the Stable Enol Tautomer Polymorph of Barbituric Acid at 224 and 95 K. Angew. Chem. 2016, 128, 1331–1334. [Google Scholar] [CrossRef]
- Grześkiewicz, A.M.; Kubicki, M. Two Tautomers of Thiobarbituric Acid in One Crystal: The Experimental Charge Density Perspective. Materials 2021, 15, 223. [Google Scholar] [CrossRef]
- Méndez, E.; Cerdá, M.F.; Gancheff, J.S.; Torres, J.; Kremer, C.; Castiglioni, J.; Kieninger, M.; Ventura, O.N. Tautomeric forms of 2-thiobarbituric acid as studied in the solid, in polar solutions, and on gold nanoparticles. J. Phys. Chem. C 2007, 111, 3369–3383. [Google Scholar] [CrossRef]
- Liu, X.; Huang, D.; Lai, C.; Zhang, C.; Qin, L.; Li, B.; Yi, H.; Deng, R.; Liu, S.; Zhang, M.; et al. Visual Method for Selective Detection of Hg2+Based on the Competitive Interactions of 2-Thiobarbituric Acid with Au Nanoparticles and Hg2+. ACS Appl. Nano Mater. 2021, 4, 6760–6767. [Google Scholar] [CrossRef]
- Orekhov, N.; Kondratyuk, N.; Logunov, M.; Timralieva, A.; Shilovskikh, V.; Skorb, E. V Insights into the Early Stages of Melamine Cyanurate Nucleation from Aqueous Solution. Cryst. Growth Des. 2021, 21, 1984–1992. [Google Scholar] [CrossRef]
- Petelski, A.N.; Duarte, D.J.R.; Pamies, S.C.; Peruchena, N.M.; Sosa, G.L. Intermolecular perturbation in the self-assembly of melamine. Theor. Chem. Acc. 2016, 135, 65. [Google Scholar] [CrossRef]
- Gus’kov, V.Y.; Sukhareva, D.A.; Gainullina, Y.Y.; Hamitov, E.M.; Galkin, Y.G.; Maistrenko, V.N. Chiral recognition capabilities of melamine and cyanuric acid supramolecular structures. Supramol. Chem. 2018, 30, 940–948. [Google Scholar] [CrossRef]
- Aliev, T.A.; Timralieva, A.A.; Kurakina, T.A.; Katsuba, K.E.; Egorycheva, Y.A.; Dubovichenko, M.V.; Kutyrev, M.A.; Shilovskikh, V.V.; Orekhov, N.; Kondratyuk, N.; et al. Designed assembly and disassembly of DNA in supramolecular structure: From ion regulated nuclear formation and machine learning recognition to running DNA cascade. Nano Sel. 2022, 3, 1526–1536. [Google Scholar] [CrossRef]
- Shilovskikh, V.V.; Timralieva, A.A.; Belogub, E.V.; Konstantinova, E.A.; Kokorin, A.I.; Skorb, E. V Radical Activity of Binary Melamine-Based Hydrogen-Bonded Self-Assemblies. Appl. Magn. Reson. 2020, 51, 939–949. [Google Scholar] [CrossRef]
- Nesterov, P.V.; Shilovskikh, V.V.; Sokolov, A.D.; Gurzhiy, V.V.; Novikov, A.S.; Timralieva, A.A.; Belogub, E.V.; Kondratyuk, N.D.; Orekhov, N.D.; Skorb, E.V. Encapsulation of Rhodamine 6G Dye Molecules for Affecting Symmetry of Supramolecular Crystals of Melamine-Barbiturate. Symmetry 2021, 13, 1119. [Google Scholar] [CrossRef]
- Shilovskikh, V.V.; Timralieva, A.A.; Nesterov, P.V.; Novikov, A.S.; Sitnikov, P.A.; Konstantinova, E.A.; Kokorin, A.I.; Skorb, E. V Melamine—Barbiturate Supramolecular Assembly as a pH-Dependent Organic Radical Trap Material. Chem. Eur. J. 2020, 26, 16603–16610. [Google Scholar] [CrossRef]
- Timralieva, A.A.; Moskalenko, I.V.; Nesterov, P.V.; Shilovskikh, V.V.; Novikov, A.S.; Konstantinova, E.A.; Kokorin, A.I.; Skorb, E. V Melamine Barbiturate as a Light-Induced Nanostructured Supramolecular Material for a Bioinspired Oxygen and Organic Radical Trap and Stabilization. ACS Omega 2023, 8, 8276–8284. [Google Scholar] [CrossRef] [PubMed]
- Alabusheva, V.S.; Shilovskikh, V.V.; Bridenko, L.A.; Gurzhiy, V.V.; Skorb, E.V. Synthesis of Catalytic Microswimmers Based on Anisotropic Platinum Sorption on Melamine Barbiturate Supramolecular Structures. Adv. Intell. Syst. 2023, 5, 2200436. [Google Scholar] [CrossRef]
- Prior, T.J.; Armstrong, J.A.; Benoit, D.M.; Marshall, K.L. The structure of the melamine-cyanuric acid co-crystal. CrystEngComm 2013, 15, 5838–5843. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, version 1.171.38.46; Rigaku Oxford Diffraction: Oxford, UK, 2015.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A “chain-of-spheres” algorithm for the Hartree-Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Neese, F. An Improvement of the Resolution of the Identity. J. Comput. Chem. 2003, 24, 1740–1747. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Dodda, L.S.; De Vaca, I.C.; Tirado-Rives, J.; Jorgensen, W.L. LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017, 45, W331–W336. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA 2005, 102, 6665–6670. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Brehm, M.; Kirchner, B. TRAVIS—A free analyzer and visualizer for monte carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 2011, 51, 2007–2023. [Google Scholar] [CrossRef] [PubMed]
- Delchev, V.B. DFT ab initio study of the keto-enol tautomerism of barbituric acid. J. Struct. Chem. 2004, 45, 570–578. [Google Scholar] [CrossRef]
- Nemes, C.T.; Laconsay, C.J.; Galbraith, J.M. Hydrogen bonding from a valence bond theory perspective: The role of covalency. Phys. Chem. Chem. Phys. 2018, 20, 20963–20969. [Google Scholar] [CrossRef]
- Karas, L.J.; Wu, C.H.; Das, R.; Wu, J.I.C. Hydrogen bond design principles. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1477. [Google Scholar] [CrossRef]
- Khitrov, M.D.; Platonov, D.N.; Belyy, A.Y.; Trainov, K.P.; Velmiskina, J.A.; Medvedev, M.G.; Salikov, R.F.; Tomilov, Y.V. A unique small molecule class of fluorophores with large Stokes shift based on the electron deficient 9-methoxypyrroloisoquinolinetrione core. Dye. Pigment. 2022, 203, 110344. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L.; Fu, M.; Chen, Z.; Huang, X. Theoretical investigations on the excited-state intramolecular proton transfer in the solvated 2-hydroxy-1-naphthaldehyde carbohydrazone. Open Chem. 2022, 20, 785–792. [Google Scholar] [CrossRef]
- Mrad, R.; Poggi, M.; Ben Chaâbane, R.; Negrerie, M. Role of surface defects in colloidal cadmium selenide (CdSe) nanocrystals in the specificity of fluorescence quenching by metal cations. J. Colloid Interface Sci. 2020, 571, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.S.; Byard, S.J.; Schroeder, S.L.M. Characterization of Proton Transfer in Co-Crystals by X-ray Photoelectron Spectroscopy (XPS). Cryst. Growth Des. 2010, 10, 1435–1442. [Google Scholar] [CrossRef]
- Stevens, J.S.; Byard, S.J.; Seaton, C.C.; Sadiq, G.; Davey, R.J.; Schroeder, S.L.M. Proton transfer and hydrogen bonding in the organic solid state: A combined XRD/XPS/ssNMR study of 17 organic acid-base complexes. Phys. Chem. Chem. Phys. 2014, 16, 1150–1160. [Google Scholar] [CrossRef]
Space Group | a, Å | b, Å | c, Å | β, ° | V, Å3 | |
---|---|---|---|---|---|---|
M-TBA | P 21/c | 10.7987 (3) | 17.7255 (4) | 6.7670 (2) | 90.698 (3) | 1295.19 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskalenko, I.V.; Shilovskikh, V.V.; Nesterov, P.V.; Novikov, A.S.; Omarova, M.; Sadovnichii, R.V.; Gurzhiy, V.V.; Orekhov, N.D.; Skorb, E.V. Supramolecular Assemblies of Melamine-2-Thiobarbiturate and Melamine-Barbiturate-2-Thiobarbiturate: Experimental and Theoretical Studies. Crystals 2023, 13, 1302. https://doi.org/10.3390/cryst13091302
Moskalenko IV, Shilovskikh VV, Nesterov PV, Novikov AS, Omarova M, Sadovnichii RV, Gurzhiy VV, Orekhov ND, Skorb EV. Supramolecular Assemblies of Melamine-2-Thiobarbiturate and Melamine-Barbiturate-2-Thiobarbiturate: Experimental and Theoretical Studies. Crystals. 2023; 13(9):1302. https://doi.org/10.3390/cryst13091302
Chicago/Turabian StyleMoskalenko, Ivan V., Vladimir V. Shilovskikh, Pavel V. Nesterov, Alexander S. Novikov, Malika Omarova, Roman V. Sadovnichii, Vladislav V. Gurzhiy, Nikita D. Orekhov, and Ekaterina V. Skorb. 2023. "Supramolecular Assemblies of Melamine-2-Thiobarbiturate and Melamine-Barbiturate-2-Thiobarbiturate: Experimental and Theoretical Studies" Crystals 13, no. 9: 1302. https://doi.org/10.3390/cryst13091302
APA StyleMoskalenko, I. V., Shilovskikh, V. V., Nesterov, P. V., Novikov, A. S., Omarova, M., Sadovnichii, R. V., Gurzhiy, V. V., Orekhov, N. D., & Skorb, E. V. (2023). Supramolecular Assemblies of Melamine-2-Thiobarbiturate and Melamine-Barbiturate-2-Thiobarbiturate: Experimental and Theoretical Studies. Crystals, 13(9), 1302. https://doi.org/10.3390/cryst13091302