Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against Mycolicibacterium Smegmatis and Bacillus Kochii
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Remarks
2.2. Synthesis of [Mg(H2O)4(phen)]·2fur·phen·H2O (1)
2.3. Synthesis of [Mg(NO3)2(phen)2] (2)
2.4. Synthesis of [Mg3(fur)6(bpy)2]·3CH3CN (3)
2.5. X-ray Study
2.6. Antimycobacterial Activity 1–3
2.6.1. Biological Activity against Mycolicibacterium smegmatis mc2 155
2.6.2. Biological Activity against Mycobacterium tuberculosis H37Rv
3. Results and Discussion
3.1. Synthesis of Compounds 1–3
3.2. Single Crystal X-ray Structures of 1–3
3.3. Thermal Properties of 1 and 2
3.4. Antimycobacterial Activity of 1–3 against M. smegmatis and M. tuberculosis H37Rv
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dimé, A.K.D.; Cattey, H.; Lucas, D.; Devillers, C.H. Electrosynthesis and X-Ray Crystallographic Structure of ZnII Meso-Triaryltriphenylphosphonium Porphyrin and Structural Comparison with MgII Meso-Triphenylphosphonium Porphine. Eur. J. Inorg. Chem. 2018, 2018, 4834–4841. [Google Scholar] [CrossRef]
- Bhattacharjee, J.; Harinath, A.; Sarkar, A.; Panda, T.K. Polymerization of ϵ-Caprolactam to Nylon-6 Catalyzed by Barium σ-Borane Complex under Mild Condition. ChemCatChem 2019, 11, 3366–3370. [Google Scholar] [CrossRef]
- Nandi, S.; De Luna, P.; Maity, R.; Chakraborty, D.; Daff, T.; Burns, T.; Woo, T.K.; Vaidhyanathan, R. Imparting Gas Selective and Pressure Dependent Porosity into a Non-Porous Solid via Coordination Flexibility. Mater. Horizons 2019, 6, 1883–1891. [Google Scholar] [CrossRef]
- Paluchowska, B.; Maurin, J.K.; Leciejewicz, J. Direct and Outer-Sphere Coordination of the Magnesium Ions in the Crystal Structures of Complexes with 2-Furancarboxylic Acid (I) and 3-Furancarboxylic Acid (II). J. Chem. Crystallogr. 1997, 27, 177–182. [Google Scholar] [CrossRef]
- Yang, J.; Yin, X.; Wu, L.; Wu, J.; Zhang, J.; Gozin, M. Alkaline and Earth Alkaline Energetic Materials Based on a Versatile and Multifunctional 1-Aminotetrazol-5-One Ligand. Inorg. Chem. 2018, 57, 15105–15111. [Google Scholar] [CrossRef]
- Wan, K.-K.; Yu, J.-H.; Yang, Q.-F.; Xu, J.-Q. 5,5′-(1,4-Dioxo-1,2,3,4-Tetrahydrophthalazine-6,7-Diyl)Bis(Oxy)Diisophthalate-Based Coordination Polymers and Their TNP Sensing Ability. Eur. J. Inorg. Chem. 2019, 2019, 3094–3102. [Google Scholar] [CrossRef]
- Roueindeji, H.; Ratsifitahina, A.; Roisnel, T.; Dorcet, V.; Kahlal, S.; Saillard, J.-Y.; Carpentier, J.-F.; Sarazin, Y. Metal⋅⋅⋅F−C Bonding in Low-Coordinate Alkaline Earth Fluoroarylamides. Chem.–A Eur. J. 2019, 25, 8854–8864. [Google Scholar] [CrossRef]
- Moskalev, M.V.; Skatova, A.A.; Razborov, D.A.; Bazanov, A.A.; Bazyakina, N.L.; Sokolov, V.G.; Fedushkin, I.L. Magnesium and Calcium Complexes of ArBIG-Bian and Their Reactivity towards CO2 (ArBIG-Bian=1,2-Bis[(2,6-Dibenzhydryl-4-Methylphenyl)Imino]Acenaphthene). Eur. J. Inorg. Chem. 2021, 2021, 1890–1896. [Google Scholar] [CrossRef]
- Bazyakina, N.L.; Makarov, V.M.; Ketkov, S.Y.; Bogomyakov, A.S.; Rumyantcev, R.V.; Ovcharenko, V.I.; Fedushkin, I.L. Metal–Organic Frameworks Derived from Calcium and Strontium Complexes of a Redox-Active Ligand. Inorg. Chem. 2021, 60, 3238–3248. [Google Scholar] [CrossRef]
- Anker, M.D.; Kefalidis, C.E.; Yang, Y.; Fang, J.; Hill, M.S.; Mahon, M.F.; Maron, L. Alkaline Earth-Centered CO Homologation, Reduction, and Amine Carbonylation. J. Am. Chem. Soc. 2017, 139, 10036–10054. [Google Scholar] [CrossRef]
- Yuan, N.; Zhang, M.; Cai, H.; Liu, Z.; Zhao, R. Two New Coordination Polymers Constructed from S-Block Alkaline Earth Metals and 2-hydroxylnicotinic Acid. Inorg. Chem. Commun. 2019, 101, 130–134. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Z.; Yu, C.; Wu, B.; Bian, Z.; Zhang, W.-X.; Xi, Z. Alkaline-Earth Metallacyclic Complexes Bearing a Diborane-Bridged Tetraamide Ligand: Synthesis, Structure and Fluorescence Property. Dalton Trans. 2019, 48, 9067–9071. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin Igor, L.; Chudakova Valentina, A.; Hummert Markus, S.H. Electron Release and Proton Acceptance Reactions of (Dpp-BIAN)Mg(THF)3. Zeitschrift für Naturforsch. 2007, 63, 161–168. [Google Scholar] [CrossRef]
- Brent Cole, L.; Holt, E.M. Alkali and Alkaline Earth Complexation to Derivatives of Salicylic Acid: [Calcium(p-Aminosalicylate)(Acetate)(H2O)] (H2O), Magnesium(Salicylate)2(H2O)4, Magnesium(p-Aminosalicylate)2(H2O)4, Magnesium(2, 6-Pyridinedicarboxylate)-(H2O)3(H2O)2 and Sodium(p-A. Inorganica Chim. Acta 1989, 160, 195–203. [Google Scholar] [CrossRef]
- Prince, E. Tables for X-ray Crystalography; International Union of Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; ISBN 1402019009. [Google Scholar]
- Gupta, M.P.; van Alsenoy, C.; Lenstra, A.T.H. A Note on Polarization Effects Around the Magnesium Cation. Bull. des Sociétés Chim. Belges 1985, 94, 161–162. [Google Scholar] [CrossRef]
- Lei, X.-J.; Hou, X.-Y.; Li, S.-N.; Jiang, Y.-C.; Sun, G.-X.; Hu, M.-C.; Zhai, Q.-G. Design of High-Symmetrical Magnesium-Organic Frameworks with Acetate as Modulator and Their Fluorescence Sensing Performance. Inorg. Chem. 2018, 57, 14280–14289. [Google Scholar] [CrossRef]
- Rogolino, D.; Carcelli, M.; Sechi, M.; Neamati, N. Viral Enzymes Containing Magnesium: Metal Binding as a Successful Strategy in Drug Design. Coord. Chem. Rev. 2012, 256, 3063–3086. [Google Scholar] [CrossRef]
- Black, C.B.; Huang, H.-W.; Cowan, J.A. Biological Coordination Chemistry of Magnesium, Sodium, and Potassium Ions. Protein and Nucleotide Binding Sites. Coord. Chem. Rev. 1994, 135–136, 165–202. [Google Scholar] [CrossRef]
- Williams, R.J.P. Tilden Lecture. The Biochemistry of Sodium, Potassium, Magnesium, and Calcium. Q. Rev. Chem. Soc. 1970, 24, 331–365. [Google Scholar] [CrossRef]
- Dimitrov, G.; Kaloyanov, N.; Petrov, P.; Wesselinova, D. Antibacterial Activity of Novel Compounds Obtained on Interaction of 1, 10-Phenanthroline with Alkaline Earth Metal Ions, Palladium (II) and NaBF4. Comptes rendus l’Academie Bulg. des Sci. 2008, 61, 595–602. [Google Scholar]
- da Silva, D.F.; Amaral, J.C.; Carlos, R.M.; Ferreira, A.G.; Forim, M.R.; Fernandes, J.B.; Della Coletta Filho, H.; de Souza, A.A. Octahedral Ruthenium and Magnesium Naringenin 5-Alkoxide Complexes: NMR Analysis of Diastereoisomers and in-Vivo Antibacterial Activity against Xylella Fastidiosa. Talanta 2021, 225, 122040. [Google Scholar] [CrossRef] [PubMed]
- Marchi, R.C.; Silva, E.S.; Santos, J.J.; Guiloski, I.C.; de Jesus, H.C.R.; de Aguiar, I.; Kock, F.V.C.; Venâncio, T.; da Silva, M.F.G.F.; Fernandes, J.B.; et al. Synthesis, Characterization, and Low-Toxicity Study of a Magnesium(II) Complex Containing an Isovanillate Group. ACS Omega 2020, 5, 3504–3512. [Google Scholar] [CrossRef] [PubMed]
- Drevenšek, P.; Košmrlj, J.; Giester, G.; Skauge, T.; Sletten, E.; Sepčić, K.; Turel, I. X-ray Crystallographic, NMR and Antimicrobial Activity Studies of Magnesium Complexes of Fluoroquinolones – Racemic Ofloxacin and Its S-Form, Levofloxacin. J. Inorg. Biochem. 2006, 100, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y. A Comprehensive Review of Furan in Foods: From Dietary Exposures and in Vivo Metabolism to Mitigation Measures. Compr. Rev. Food Sci. Food Saf. 2023, 22, 809–841. [Google Scholar] [CrossRef] [PubMed]
- Panda, L.; Duarte-Sierra, A. Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. Horticulturae 2022, 8, 401. [Google Scholar] [CrossRef]
- Becerra, M.L.; Prieto, G.A.; Rendueles, M.; Diaz, M. Biological Transformations of Furanic Platform Molecules to Obtain Biomass-Derived Furans: A Review. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Yi-Chang, N.; Heflich, R.H.; Kadlubar, F.F.; Fu, P.P. Mutagenicity of Nitrofurans in Salmonella Typhimurium TA98, TA98NR and TA98/1,8-DNP6. Mutat. Res. Lett. 1987, 192, 15–22. [Google Scholar] [CrossRef]
- Sharma, S.; Anand, N. Chapter 17 - Nitroheterocycles. In Approaches to Design and Synthesis of Antiparasitic Drugs; Sharma, S., Anand, N.B.T.-P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 25, pp. 421–438. ISBN 0165-7208. [Google Scholar]
- Greenaway, J.C.; Fantel, A.G.; Juchau, M.R. On the Capacity of Nitroheterocyclic Compounds to Elicit an Unusual Axial Asymmetry in Cultured Rat Embryos. Toxicol. Appl. Pharmacol. 1986, 82, 307–315. [Google Scholar] [CrossRef]
- Deng, F.; Dong, C.; Liu, Y. Characterization of the Interaction between Nitrofurazone and Human Serum Albumin by Spectroscopic and Molecular Modeling Methods. Mol. Biosyst. 2012, 8, 1446–1451. [Google Scholar] [CrossRef]
- Nakamura, H.; Kawakami, T.; Niino, T.; Takahashi, Y.; Onodera, S. Chemical Fate and Changes in Mutagenic Activity of Antibiotics Nitrofurazone and Furazolidone during Aqueous Chlorination. J. Toxicol. Sci. 2008, 33, 621–629. [Google Scholar] [CrossRef]
- Hooper, G.; Covarrubias, J.J.P. Clinical Use and Efficacy of Furacin: A Historical Perspective. J. Int. Med. Res. 1983, 11, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Melnic, S.; Prodius, D.; Stoeckli-Evans, H.; Shova, S.; Turta, C. Synthesis and Anti-Tuberculosis Activity of New Hetero(Mn, Co, Ni)Trinuclear Iron(III) Furoates. Eur. J. Med. Chem. 2010, 45, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Melnic, S.; Prodius, D.; Simmons, C.; Zosim, L.; Chiriac, T.; Bulimaga, V.; Rudic, V.; Turta, C. Biotechnological Application of Homo- and Heterotrinuclear Iron(III) Furoates for Cultivation of Iron-Enriched Spirulina. Inorganica Chim. Acta 2011, 373, 167–172. [Google Scholar] [CrossRef]
- Viganor, L.; Howe, O.; McCarron, P.; McCann, M.; Devereux, M. The Antibacterial Activity of Metal Complexes Containing 1, 10-Phenanthroline: Potential as Alternative Therapeutics in the Era of Antibiotic Resistance. Curr. Top. Med. Chem. 2017, 17, 1280–1302. [Google Scholar] [CrossRef]
- Abu Ali, H.; Fares, H.; Darawsheh, M.; Rappocciolo, E.; Akkawi, M.; Jaber, S. Synthesis, Characterization and Biological Activity of New Mixed Ligand Complexes of Zn(II) Naproxen with Nitrogen Based Ligands. Eur. J. Med. Chem. 2015, 89, 67–76. [Google Scholar] [CrossRef]
- Hachey, A.C.; Havrylyuk, D.; Glazer, E.C. Biological Activities of Polypyridyl-Type Ligands: Implications for Bioinorganic Chemistry and Light-Activated Metal Complexes. Curr. Opin. Chem. Biol. 2021, 61, 191–202. [Google Scholar] [CrossRef]
- McCann, M.; Kellett, A.; Kavanagh, K.; Devereux, M.; Santos, A.L.S. Deciphering the Antimicrobial Activity of Phenanthroline Chelators. Curr. Med. Chem. 2012, 19, 2703–2714. [Google Scholar] [CrossRef]
- Li, F.; Collins, J.G.; Keene, F.R. Ruthenium Complexes as Antimicrobial Agents. Chem. Soc. Rev. 2015, 44, 2529–2542. [Google Scholar] [CrossRef]
- Ermakova, E.A.; Golubeva, Y.A.; Smirnova, K.S.; Klyushova, L.S.; Berezin, A.S.; Fetisov, L.N.; Svyatogorova, A.E.; Andros, N.O.; Zubenko, A.A.; Lider, E. V Cytotoxic Mixed-Ligand Copper(Ii) Complexes with 1H-Tetrazole-5-Acetic Acid and Oligopyridine Derivatives. New J. Chem. 2023, 47, 9472–9482. [Google Scholar] [CrossRef]
- Ermakova, E.A.; Golubeva, J.A.; Smirnova, K.S.; Klyushova, L.S.; Eltsov, I.V.; Zubenko, A.A.; Fetisov, L.N.; Svyatogorova, A.E.; Lider, E. V Bioactive Mixed-Ligand Zinc(II) Complexes with 1H-Tetrazole-5-Acetic Acid and Oligopyridine Derivatives. Polyhedron 2023, 230, 116213. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Baravikov, D.E.; Kiskin, M.A.; Nelyubina, Y.V.; Primakov, P.V.; Bekker, O.B.; Khoroshilov, A.V.; Sidorov, A.A.; Eremenko, I.L. Bioisostere Modifications of Cu2+ and Zn2+ with Pyromucic Acid Anions and N-Donors: Synthesis, Structures, Thermal Properties, and Biological Activity. Russ. J. Coord. Chem. 2020, 46, 411–419. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Yambulatov, D.S.; Kiskin, M.A.; Nelyubina, Y.V.; Primakov, P.V.; Bekker, O.B.; Sidorov, A.A.; Eremenko, I.L. Mononuclear Cu(II), Zn(II), and Co(II) Complexes with 2-Furoate Anions and 2,2’-Bpy: Synthesis, Structure, and Biological Activity. Russ. J. Coord. Chem. 2020, 46, 787–794. [Google Scholar] [CrossRef]
- Koshenskova, K.A.; Baravikov, D.E.; Nelyubina, Y.V.; Primakov, P.V.; Shender, V.O.; Maliyants, I.K.; Bekker, O.B.; Aliev, T.M.; Borodin, E.A.; Leusova, N.Y.; et al. Copper(II) Furancarboxylate Complexes with 5-Nitro-1,10-Phenanthroline as Promising Biological Agents. Russ. J. Coord. Chem. 2023, 49, 632–643. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Ramón-García, S.; Ng, C.; Anderson, H.; Chao, J.D.; Zheng, X.; Pfeifer, T.; Av-Gay, Y.; Roberge, M.; Thompson, C.J. Synergistic Drug Combinations for Tuberculosis Therapy Identified by a Novel High-Throughput Screen. Antimicrob. Agents Chemother. 2011, 55, 3861–3869. [Google Scholar] [CrossRef]
- Lyadova, I.V.; Eruslanov, E.B.; Khaidukov, S.V.; Yeremeev, V.V.; Majorov, K.B.; Pichugin, A.V.; Nikonenko, B.V.; Kondratieva, T.K.; Apt, A.S. Comparative Analysis of T Lymphocytes Recovered from the Lungs of Mice Genetically Susceptible, Resistant, and Hyperresistant to Mycobacterium Tuberculosis-Triggered Disease. J. Immunol. 2000, 165, 5921–5931. [Google Scholar] [CrossRef]
- Majorov, K.B.; Nikonenko, B.V.; Ivanov, P.Y.; Telegina, L.N.; Apt, A.S.; Velezheva, V.S. Structural Modifications of 3-Triazeneindoles and Their Increased Activity Against Mycobacterium Tuberculosis. Antibiotics 2020, 9, 356. [Google Scholar] [CrossRef]
- Alvarez, S. Distortion Pathways of Transition Metal Coordination Polyhedra Induced by Chelating Topology. Chem. Rev. 2015, 115, 13447–13483. [Google Scholar] [CrossRef]
- Koshenskova, K.A.; Lutsenko, I.A.; Nebykov, D.N.; Mokhov, V.M.; Nelyubina, Y.V.; Primakov, P.V.; Popov, Y.V.; Khoroshilov, A.V.; Kottsov, S.Y.; Kiskin, M.A.; et al. Cu(II) Complexes as Catalyst Precursors in the Process of Selective Hydrogenation of Diene Hydrocarbons. Polyhedron 2023, 230, 116208. [Google Scholar] [CrossRef]
- Nikiforova, M.E.; Lutsenko, I.A.; Kiskin, M.A.; Nelyubina, Y.V.; Primakov, P.V.; Bekker, O.B.; Khoroshilov, A.V.; Eremenko, I.L. Coordination Polymer of Ba2+ with 2-Furoic Acid Anions: Synthesis, Structure, and Thermal Properties. Russ. J. Inorg. Chem. 2021, 66, 1343–1349. [Google Scholar] [CrossRef]
- Bekker, O.B.; Sokolov, D.N.; Luzina, O.A.; Komarova, N.I.; Gatilov, Y.V.; Andreevskaya, S.N.; Smirnova, T.G.; Maslov, D.A.; Chernousova, L.N.; Salakhutdinov, N.F.; et al. Synthesis and Activity of (+)-Usnic Acid and (−)-Usnic Acid Derivatives Containing 1,3-Thiazole Cycle against Mycobacterium Tuberculosis. Med. Chem. Res. 2015, 24, 2926–2938. [Google Scholar] [CrossRef]
- Koshenskova, K.A.; Lutsenko, I.A.; Nelyubina, Y.V.; Primakov, P.V.; Aliev, T.M.; Bekker, O.B.; Khoroshilov, A.V.; Mantrov, S.N.; Kiskin, M.A.; Eremenko, I.L. Copper(II) Complexes with 5-Nitro-2-Furoic Acid: Synthesis, Structure, Thermal Properties, and Biological Activity. Russ. J. Inorg. Chem. 2022, 67, 1545–1556. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Baravikov, D.E.; Koshenskova, K.A.; Kiskin, M.A.; Nelyubina, Y.V.; Primakov, P.V.; Voronina, Y.K.; Garaeva, V.V.; Aleshin, D.A.; Aliev, T.M.; et al. What Are the Prospects for Using Complexes of Copper(Ii) and Zinc(Ii) to Suppress the Vital Activity of Mycolicibacterium Smegmatis? RSC Adv. 2022, 12, 5173–5183. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 |
---|---|---|---|
Empirical formula | C34H32MgN4O11 | C24H16MgN6O6 | C56H43Mg3N7O18 |
Formula weight | 696.94 | 508.74 | 1174.90 |
T (K) | 100 | 120 | 120 |
Crystal system Space group | orthorhombic Pna21 | triclinic P-1 | triclinic P-1 |
a (Å) | 13.9526(4) | 7.9821(4) | 12.2596(6) |
b (Å) | 22.5521(7) | 11.0467(6) | 13.6771(7) |
c (Å) | 10.2641(3) | 13.1919(7) | 17.5930(11) |
α (deg) | 90 | 80.1010(10) | 84.945(2) |
β (deg) | 90 | 82.6730(10) | 69.6460(10) |
γ (deg) | 90 | 73.2120(10) | 89.6010(10) |
V (Å3) | 3229.71(17) | 1093.31(10) | 2754.1(3) |
Z | 4 | 2 | 2 |
Dcalc (g·cm−3) | 1.433 | 1.545 | 1.417 |
μ (mm−1) | 0.125 | 0.140 | 0.137 |
F(000) | 1456 | 534 | 1216 |
Reflections measured | 41,230 | 11,361 | 32,091 |
Independent reflections | 6354 | 5761 | 13,293 |
Rint | 0.0377 | 0.0224 | 0.0447 |
R1 (all data) | 0.0390 | 0.0536 | 0.0881 |
wR2 (all data) | 0.0957 | 0.1044 | 0.1284 |
R1 (I > 2σ(I)) | 0.0349 | 0.0404 | 0.0472 |
wR2 (I > 2σ(I)) | 0.0920 | 0.0962 | 0.1088 |
GooF | 1.020 | 1.053 | 1.012 |
Δρmax/ρmin (e/Å3) | 0.414/–0.264 | 0.373/–0.250 | 0.586/–0.335 |
Parameter | 1 | 2 | 3 |
---|---|---|---|
Bond, Å | |||
Mg−O(fur) | – | – | 1.9980(15)–2.2038(15) |
Mg−O(H2O) | 2.008(2)–2.117(2) | – | – |
Mg−O(NO3) | – | 2.0442(11), 2.0311(11) | – |
Mg−N | 2.224(3), 2.257(3) | 2.1966(12)–2.2148(12) | 2.1537(18)–2.2101(18) |
Angle, ° | |||
O-Mg-O | 86.71(9)–174.03(10) | 90.98(5) | 88.31(5)–180.0 |
N-Mg-O | 86.85(9)–164.78(11) | 87.72(5)–168.88(5) | 83.89(6)–179.03(7) |
N-Mg-N | 73.69(10) | 75.63(5)–163.09(5) | 74.61(7), 75.23(7) |
Continuous symmetry measures | |||
S(OC) | 1.164 | 1.573 | 0.029, 2.618 [0.007, 2.700] [b] |
S(TPR) | 10.933 | 10.605 | 16.376, 12.410 [16.655, 11.107] [b] |
D | H | A | d(D–H), Å | d(H–A), Å | d(D–A), Å | D-H-A, ° |
---|---|---|---|---|---|---|
O3W | H3WA | N3 1 | 0.86 | 1.99 | 2.820(3) | 160.7 |
O3W | H3WB | O5 | 0.94 | 1.82 | 2.755(3) | 169.7 |
O1W | H1WA | N4 | 0.94 | 1.84 | 2.768(3) | 166.1 |
O1W | H1WB | O1 | 0.95 | 1.83 | 2.725(3) | 157.0 |
O2W | H2WA | O2 | 0.88 | 1.77 | 2.644(3) | 172.5 |
O2W | H2WB | O4 | 0.86 | 1.81 | 2.657(3) | 173.9 |
O4W | H4WA | O3 1 | 0.95 | 2.45 | 2.929(3) | 111.6 |
O4W | H4WA | O5W | 0.95 | 1.87 | 2.761(3) | 155.5 |
O4W | H4WB | O1 1 | 0.97 | 1.80 | 2.758(3) | 168.5 |
O5W | H5WA | O1W | 0.92 | 2.20 | 2.930(3) | 135.3 |
O5W | H5WB | O5 2 | 0.88 | 1.90 | 2.754(3) | 163.5 |
Complex | Stage/ΔT, °C | Δm (TG), % | Tendo/exo, °C | mfin, % |
---|---|---|---|---|
1 | 1 (92–170) 2 (170–485) | 12.3 41.1 | 128 ± 0.7 389.8 ± 0.7 | 44.7 |
2 | 1 (397–425) | 71.9 | 407.5 ± 0.7 | 26.4 |
Compound | MIC, nmol/Disk | Zone of Inhibition, mm | Ref | |
---|---|---|---|---|
24 h | 24 h | 120 h | ||
1 | 10 | 6.5 ± 0.2 * | 6.3 ± 0.2 * | this work |
2 | 20 | 7.5 ± 0.3 | 6.5 ± 0.3 ** | this work |
3 | 200 | 7.0 ± 0.5 * | 6.1 ± 0.1 * | this work |
[Cu(fur)2(phen)] | 5 | 7 ± 0.5 ** | 7 ± 0.5 ** | [43] |
[Cu2(NO2-fur)4(bpy)2]∙H2O | 20 | 7.0 ± 0.0 | 6.9 ± 0.1 * | [56] |
[Cu(fur)2(neoc)(H2O)] | 25 | 6.7 ± 0.3 | 6.6 ± 0.1 ** | [57] |
[Cu(fur)2(bpy)(H2O)] | 100 | 7.0 ± 0.5 | 7.0 ± 0.5 ** | [44] |
Hfur | 1000 | 0 | 0 | this work |
bpy | 500 | 0 | 0 | this work |
phen | 50 | 7.5 ± 0.5 | 0 | this work |
neocuproine | 100 | 6.5 ± 0.1 | 0 | [57] |
Rifampicin | 6 | 7.2 ± 0.3 ** | 7.13 ± 0.35 ** | this work |
Complex | MIC for Free MBT H37Rv(µg/mL) * | MIC for Free MBT H37Rv(µg/mL) ** | % of Specific Lysis of Macrophages | IC50, µg/mL | SI | ||
---|---|---|---|---|---|---|---|
20 (µg/mL) | 10 (µg/mL) | 5 (µg/mL) | |||||
1 | 1.48–4.44 | 2.53–3.38 | - | - | - | - | - |
2 | 1.48–4.44 | 1.42–1.90 | 68.4 ± 8.5 | 18.5 ± 3.6 | 9.2 ± 4.7 | 10 | ~6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforova, M.E.; Yambulatov, D.S.; Nelyubina, Y.V.; Primakov, P.V.; Bekker, O.B.; Majorov, K.B.; Shmelev, M.A.; Khoroshilov, A.V.; Eremenko, I.L.; Lutsenko, I.A. Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against Mycolicibacterium Smegmatis and Bacillus Kochii. Crystals 2023, 13, 1306. https://doi.org/10.3390/cryst13091306
Nikiforova ME, Yambulatov DS, Nelyubina YV, Primakov PV, Bekker OB, Majorov KB, Shmelev MA, Khoroshilov AV, Eremenko IL, Lutsenko IA. Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against Mycolicibacterium Smegmatis and Bacillus Kochii. Crystals. 2023; 13(9):1306. https://doi.org/10.3390/cryst13091306
Chicago/Turabian StyleNikiforova, Marina E., Dmitriy S. Yambulatov, Yulia V. Nelyubina, Petr V. Primakov, Olga B. Bekker, Konstantin B. Majorov, Maxim A. Shmelev, Andrey V. Khoroshilov, Igor L. Eremenko, and Irina A. Lutsenko. 2023. "Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against Mycolicibacterium Smegmatis and Bacillus Kochii" Crystals 13, no. 9: 1306. https://doi.org/10.3390/cryst13091306
APA StyleNikiforova, M. E., Yambulatov, D. S., Nelyubina, Y. V., Primakov, P. V., Bekker, O. B., Majorov, K. B., Shmelev, M. A., Khoroshilov, A. V., Eremenko, I. L., & Lutsenko, I. A. (2023). Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against Mycolicibacterium Smegmatis and Bacillus Kochii. Crystals, 13(9), 1306. https://doi.org/10.3390/cryst13091306