Temperature Dependent Crystal Structure of Nd2CuTiO6: An In Situ Low Temperature Powder Neutron Diffraction Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaak, R.E.; Mallouk, T.E. Perovskites by design: A toolbox of solid-state reactions. Chem. Mater. 2002, 14, 1455. [Google Scholar]
- Attfield, J.P.; Lightfoot, P.; Morris, R.E. Perovskites. Dalton Trans. 2015, 44, 10541–10542. [Google Scholar] [CrossRef] [PubMed]
- Vasala, S.; Karppinen, M. A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 2015, 43, 1–36. [Google Scholar] [CrossRef]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Cryst. B 1972, 28, 3384. [Google Scholar] [CrossRef]
- Howard, C.J.; Stokes, H.T. Group-Theoretical Analysis of Octahedral Tilting in Perovskites. Acta Cryst. B 1998, 54, 782–789. [Google Scholar] [CrossRef] [Green Version]
- Achary, S.N.; Katari, V.; Sayed, F.N.; Tyagi, A.K. A brief review on the effect of preparation conditions on magnetic properties of some A2MMnO6 (A = La, Eu and Y; M = Mg, Co, Ni) type perovskites. J. Chem. Sci. 2019, 96, 131. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.-J.; Weng, B.; Ge, J.; Sun, Q.; Li, Z.; Yan, Y. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 2019, 12, 442. [Google Scholar] [CrossRef]
- Leo, A.; Motuzas, J.; Yacou, C.; Liu, S.; Serra, J.M.; Navarrete, L.; Drennan, J.; Julbe, A.; da Costa, J.C.D. Copper oxide—Perovskite mixed matrix membranes delivering very high oxygen fluxes. J. Membr. Sci. 2017, 526, 323. [Google Scholar] [CrossRef]
- Martin, C.D.; Parise, J.B. Structure constraints and instability leading to the post-perovskite phase transition of MgSiO3. Earth Planet. Sci. Lett. 2008, 265, 630–640. [Google Scholar]
- Kennedy, B.J.; Vogt, T.; Martin, C.D.; Parise, J.B.; Hriljac, J.A. Pressure-induced orthorhombic to rhombohedral phase transition in LaGaO3. J. Phys. Condens Matter 2001, 13, L925–L930. [Google Scholar] [CrossRef]
- Dhak, P.; Pramanik, P.; Bhattacharya, S.; Roy, A.; Achary, S.N.; Tyagi, A.K. Structural phase transition in lanthanum gallate as studied by Raman and X-ray diffraction measurements. Phys. Status Solidi B 2011, 248, 1884–1893. [Google Scholar] [CrossRef]
- Errandonea, D.; Santamaria-Perez, D.; Martinez-Garcia, D.; Gomis, O.; Shukla, R.; Achary, S.N.; Tyagi, A.K.; Popescu, C. Pressure Impact on the Stability and Distortion of the Crystal Structure of CeScO3. Inorg. Chem. 2017, 56, 8363–8371. [Google Scholar] [CrossRef] [Green Version]
- Rosas, B.Y.; Instan, A.A.; Mishra, K.K.; Achary, S.N.; Katiyar, R.S. Studies of Optical, Dielectric, Ferroelectric, and Structural Phase Transitions in 0.9[KNbO3]-0.1[BaNi1/2Nb1/2O3]. Crystals 2022, 12, 35. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Cheetham, A.K.; Mahesh, R. Giant Magnetoresistance and Related Properties of Rare-Earth Manganates and Other Oxide Systems. Chem. Mater. 1996, 8, 2421. [Google Scholar] [CrossRef]
- Rogado, N.S.; Li, J.; Sleight, A.W.; Subramanian, M.A. Magnetocapacitance and Magnetoresistance Near Room Temperature in a Ferromagnetic Semiconductor: La2NiMnO6. Adv. Mater. 2005, 17, 2225. [Google Scholar] [CrossRef]
- Tiwari, R.M.; Gadhvi, M.; Nag, A.; Vasanthacharya, N.Y.; Gopalakrishnan, J. Manganese-mediated ferromagnetism in La2Fe1-xMn2xCr1-xO6 perovskite oxides. J. Chem. Sci. 2010, 122, 529. [Google Scholar] [CrossRef]
- Dimitrovska-Lazova, S.; Aleksovska, S.; Tzvetkov, P. Synthesis and crystal structure determination of YCo1-xFexO3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites. J. Chem. Sci. 2015, 127, 1173. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, N.; Robert, T.M.; Jayalatha, T.; Neema, P.M.; Mathew, D.; Cyriac, J. Lead-free, mixed tin-copper perovskites with improved stability and optical properties. J. Alloys Compd. 2021, 879, 160325. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, M.; Tan, Q. Embedding nanostructure and colossal permittivity of TiO2-covered CCTO perovskite materials by a hydrothermal route. J. Alloys Compd. 2021, 885, 160948. [Google Scholar] [CrossRef]
- Parrino, F.; García-López, E.; Marcì, G.; Palmisano, L.; Felice, V.; Sora, I.N.; Armelao, L. Cu-substituted lanthanum ferrite perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation. J. Alloys Compd. 2016, 682, 686. [Google Scholar] [CrossRef]
- Yang, W.Z.; Mao, M.M.; Liu, X.Q.; Chen, X.M. Structure and dielectric relaxation of double-perovskite La2CuTiO6 ceramics. J. Appl. Phys. 2010, 107, 124102. [Google Scholar] [CrossRef]
- Palacín, M.R.; Bassas, J.; Rodriguez-Carvajal, J.; Gomez-Romero, P. Syntheses of the perovskite La2CuTiO6 by the ceramic, oxide precursors and sol–gel methods, and study of the structure and Cu–Ti distribution by X-ray and neutron diffraction. J. Mater. Chem. 1993, 3, 1171. [Google Scholar] [CrossRef]
- Gomez-Romero, P.; Palacin, M.R.; Casañ, N.; Fuertes, A.; Martinez, B. Towards the synthesis of layered perovskites. Synthesis, structure and magnetic properties of La2CuTiO6. Solid State Ion. 1993, 603, 63–65. [Google Scholar]
- Zinenko, V.I.; Pavlovskii, M.S.; Shinkorenko, A.S. Electronic structure, lattice dynamics, and magnetoelectric properties of double perovskite La2CuTiO6. Phys. Solid State 2016, 58, 2294. [Google Scholar] [CrossRef]
- Shah, S.; Ali, Z.; Mehmood, S.; Khan, I.; Ahmad, I. Electronic structure, optical and magnetic properties of double perovskites La2MTiO6 (M = Co, Ni, Cu and Zn). Mater. Chem. Phys. 2021, 272, 125050. [Google Scholar] [CrossRef]
- Meng, L.; Feng, C.; He, L.; Deng, S.; Wu, Y.; Han, L.; Bai, Y. Understanding of the bond covalency nature with ionic electronegativity in perovskite cuprates La2CuMO6-x (M = Ti, Mn, Ru). J. Solid State Chem. 2022, 310, 123050. [Google Scholar] [CrossRef]
- Kumar, N.; Rao, K.S.; Sahu, A.K.; Deshpande, U.P.; Achary, S.N.; Deshpande, S.K. Role of oxygen partial pressure of synthesis environment in tuning the dielectric properties of Nd2CuTiO6. Mater. Chem. Phys. 2022, 286, 126203. [Google Scholar] [CrossRef]
- Ramadass, N.; Gopalakrishnan, J.; Sastri, M.V.C. Preparation and characterization of La2TiMO6 (M = Co, Ni, Cu and Zn) perovskites. J. Inorg. Nucl. Chem. 1978, 40, 1453–1454. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, N.; Singh, B.; Kaushik, S.D.; Gaur, N.K.; Bhattacharya, S.; Rayaprol, S.; Simon, C. Magnetic and dielectric properties of R2CuTiO6 compounds (R = Y, La, Pr and Nd). J. Supercond. Nov. Magn. 2011, 24, 1829–1838. [Google Scholar] [CrossRef]
- Rodriguez, E.; Lopez, M.L.; Campo, J.; Veiga, M.L.; Pico, C. Crystal and magnetic structure of the perovskites La2MTiO6 (M = Co, Ni). J. Mater. Chem. 2002, 12, 2798–2802. [Google Scholar] [CrossRef]
- Rayaprol, S.; Kaushik, S.D.; Kumar, N.; Singh, K.; Guillou, F.; Simon, C. Neutron diffraction, specific heat and magnetization studies on Nd2CuTiO6 in Solid State Physics Symposium-2015. In AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2016; pp. 651–654. [Google Scholar]
- Siruguri, V.; Babu, P.D.; Gupta, M.; Pimpale, A.V.; Goyal, P.S. A high resolution powder diffractometer using focusing optics. Pramana, J. Phys. 2008, 71, 1197–1202. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Mishra, A.K.; Garg, N.; Shanavas, K.V.; Achary, S.N.; Tyagi, A.K.; Sharma, S.M. High pressure structural stability of BaLiF3. J. Appl. Phys. 2011, 110, 123505. [Google Scholar] [CrossRef]
- Bevara, S.; Achary, S.N.; Mishra, K.K.; Ravindran, T.R.; Sinha, A.K.; Sastry, P.U.; Tyagi, A.K. Temperature dependent structural, vibrational and magnetic properties of K3Gd5(PO4)6. Phys. Chem. Chem. Phys. 2017, 19, 6030–6041. [Google Scholar] [CrossRef] [PubMed]
- Chatterji, T.; Hansen, T.C. Magnetoelastic effects in Jahn–Teller distorted CrF2 and CuF2 studied by neutron powder diffraction. J. Phys. Condens. Matter 2011, 23, 276007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achary, S.N.; Patwe, S.J.; Vishwanath, A.; Wajhal, S.; Krishna, P.S.R.; Tyagi, A.K. Evolution of crystal structure of PbMoO4 between 5 and 300 K: A low temperature powder neutron diffraction study. Mater. Chem. Phys. 2021, 260, 124111. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Achary, S.N. Thermal expansion. In Thermodynamic Properties of Solids; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2010. [Google Scholar]
- Atuchin, V.V.; Liang, F.; Grazhdannikov, S.; Isaenko, L.I.; Krinitsin, P.G.; Molokeev, M.S.; Prosvirin, I.P.; Jiang, X.; Lin, Z. Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe2. RSC Adv. 2018, 8, 9946–9955. [Google Scholar] [CrossRef] [Green Version]
- Chimitova, O.D.; Bazarov, B.G.; Bazarova, J.G.; Atuchin, V.V.; Azmi, R.; Sarapulova, A.E.; Mikhailova, D.; Balachandran, G.; Fiedler, A.; Geckle, U.; et al. The crystal growth and properties of novel magnetic double molybdate RbFe5(MoO4)7 with mixed Fe3+/Fe2+ states and 1D negative thermal expansion. CrystEngComm 2021, 23, 3297–3307. [Google Scholar] [CrossRef]
- Denisenko, Y.G.; Atuchin, V.V.; Molokeev, M.S.; Wang, N.; Jiang, X.; Aleksandrovsky, A.S.; Krylov, A.S.; Oreshonkov, A.S.; Sedykh, A.E.; Volkova, S.S.; et al. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra. J. Mater. Sci. Technol. 2021, 76, 111–121. [Google Scholar] [CrossRef]
- Achary, S.N.; Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Manjón, F.J.; Krishna, P.S.R.; Patwe, S.J.; Grover, V.; Tyagi, A.K. Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Trans. 2013, 42, 14999–15015. [Google Scholar] [CrossRef]
2 K | 55 K | 140 K | 180 K | 200 K | 250 K | 290 K | |
---|---|---|---|---|---|---|---|
a (Å) | 5.7283(5) | 5.7282(4) | 5.7263(5) | 5.7262(1) | 5.7274(5) | 5.7270(4) | 5.7277(4) |
b (Å) | 7.6160(6) | 7.6160(6) | 7.6201(7) | 7.6236(6) | 7.6288(6) | 7.6304(6) | 7.6393(5) |
c (Å) | 5.4568(4) | 5.4550(4) | 5.4575(5) | 5.4616(5) | 5.4649(4) | 5.4678(4) | 5.4723(3) |
V (Å)3 | 238.06(3) | 237.98(3) | 238.14(4) | 238.42(4) | 238.78(3) | 238.94(3) | 239.44(3) |
Nd1 4c (x, 1⁄4, z) | |||||||
x | 0.5647(6) | 0.5629(6) | 0.5623(7) | 0.5634(6) | 0.5639(6) | 0.5614(6) | 0.5624(4) |
z | 0.0029(6) | 0.0149(6) | 0.0151(7) | 0.0136(7) | 0.0118(7) | 0.0093(6) | 0.0099(5) |
B (Å)2 | 0.19(5) | 0.28(6) | 0.32(6) | 0.17(6) | 0.22(6) | 0.260(5) | 0.25(4) |
Occ. | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0.5Cu/0.5Ti 4a (0, 0, 0) | |||||||
B (Å)2 | 0.23(19) | 0.40(20) | 0.28(23) | 0.19(21) | 0.03(21) | 0.78(20) | 0.88(16) |
Occ. | 0.5:0.5 | 0.5:0.5 | 0.5:0.5 | 0.5:0.5 | 0.5:0.5 | 0.5:0.5 | 0.5:0.5 |
O1 8d (x, y, z) | |||||||
x | 0.3060(6) | 0.3013(6) | 0.3021(8) | 0.3027(6) | 0.3032(6) | 0.3012(6) | 0.3013(5) |
y | 0.0460(4) | 0.0458(4) | 0.0458(5) | 0.0458(4) | 0.0461(4) | 0.0456(4) | 0.0450(3) |
z | 0.1979(6) | 0.9096(7) | 0.1971(7) | 0.1984(6) | 0.1972(6) | 0.1987(6) | 0.1988(4) |
B (Å)2 | 0.80(8) | 0.46(8) | 1.02(8) | 0.79(7) | 0.81(7) | 0.94(6) | 1.05(5) |
Occ. | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
O2 4c (x, 1⁄4, z) | |||||||
x | 0.9752(6) | 0.9755(6) | 0.9748(8) | 0.9762(7) | 0.9746(7) | 0.9760(6) | 0.9756(5) |
z | 0.9151(7) | 0.9096(7) | 0.9084(8) | 0.9149(8) | 0.9148(8) | 0.9114(7) | 0.9112(6) |
B (Å)2 | 0.37(8) | 0.46(8) | 0.37(10) | 0.45(10) | 0.52(9) | 0.49(8) | 0.51(7) |
Occ. | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Rp, Rwp, χ2 | 2.78, 3.52, 0.986 | 3.77, 4.77, 1.84 | 4.09, 5.10, 2.01 | 4.57, 5.75, 2.56 | 4.58, 5.16, 2.20 | 3.63, 4.62, 1.57 | 3.96, 5.08, 3.87 |
RB, RF | 8.46, 6.98 | 5.16, 3.68 | 6.94, 4.79 | 6.49, 5.16 | 5.99, 4.58 | 4.98, 4.00 | 4.60, 3.02 |
Bonds | 2 K | 55 K | 140 K | 180 K | 200 K | 250 K | 290 K |
---|---|---|---|---|---|---|---|
Nd1-O1 × 2 | 2.396(4) | 2.379(4) | 2.372(5) | 2.381(5) | 2.382(5) | 2.393(4) | 2.400(3) |
Nd1-O1 × 2 | 2.644(4) | 2.596(4) | 2.603(5) | 2.603(5) | 2.613(5) | 2.620(4) | 2.620(3) |
Nd1-O1 × 2 | 2.614(4) | 2.650(3) | 2.650(4) | 2.648(4) | 2.643(4) | 2.646(4) | 2.644(3) |
Nd1-O2 | 2.400(5) | 2.432(5) | 2.433(6) | 2.424(5) | 2.411(5) | 2.434(5) | 2.428(4) |
Nd1-O2 | 2.338(5) | 2.3691(5) | 2.365(6) | 2.392(6) | 2.387(6) | 2.352(5) | 2.357(4) |
CN | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Av.Dis | 2.506(2) | 2.507(2) | 2.506(2) | 2.510(2) | 2.509(2) | 2.513(2) | 2.514(1) |
Distt | 24.85 × 10−4 | 22.81 × 10−4 | 24.15 × 10−4 | 21.76 × 10−4 | 22.66 × 10−4 | 23.62 × 10−4 | 22.70 × 10−4 |
Cu/Ti1-O1 × 2 | 2.088(3) | 2.065(3) | 2.067(4) | 2.074(4) | 2.074(4) | 2.068(3) | 2.0688(3) |
Cu/Ti1-O1 × 2 | 2.019(3) | 2.034(3)) | 2.034(4) | 2.028(4) | 2.033(4) | 2.033(3) | 2.032(3) |
Cu/Ti1-O2 × 2 | 1.965(1) | 1.972(1) | 1.975(1) | 1.966(1) | 1.969(1) | 1.973(1) | 1.976(1) |
CN | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Av.Dis | 2.024(1)) | 2.024(1) | 2.025(1) | 2.023(1)) | 2.025(1) | 2.024(1) | 2.026(1) |
Distt | 6.26 × 10−4 | 3.65 × 10−4 | 3.54 × 10−4 | 4.72 × 10−4 | 4.57 × 10−4 | 3.73 × 10−44 | 3.58 × 10−4 |
M-O1-M | 148.78(13) | 149.57(13) | 149.34(15) | 149.45(15) | 149.09(15) | 149.81(13) | 149.94(11) |
M-O2-M | 151.44(4) | 149.86(4) | 149.46(5) | 151.48(4) | 151.31(4) | 150.42(4) | 150.34(3) |
a(Å) | b(Å) | c(Å) | V(Å)3 | |
---|---|---|---|---|
X0 | 5.727(1) | 7.616(1) | 5.456(1) | 238.0(1) |
X1 | −2.3(0.8) × 10−5 | −0.6(2.4) × 10−5 | −1.8(1.9) × 10−5 | −0.002(2) |
X2 | 6.8(2.7) × 10−8 | 2.9(0.8) × 10−8 | 2.6(0.6) × 10−7 | 2.3(0.5) × 10−5 |
αa (K−1) | αb (K−1) | αc (K−1) | αV (K−1) | |
---|---|---|---|---|
X0 | 0.2(0.7) × 10−6 | −0.7(1.1) × 10−6 | −2.9(2.8) × 10−6 | −3.3(3.8× 10−6 |
X1 | −2.6(0.9) × 10−8 | 3.2(1.8) × 10−8 | 1.5(4.5) × 10−8 | 2.1(6.0) × 10−8 |
X2 | 8.7(3.0) × 10−11 | 2.3(5.6) × 10−11 | 1.2(1.4) × 10−10 | 2.2(2.0) × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Kaushik, S.D.; Rao, K.S.; Babu, P.D.; Deshpande, S.K.; Achary, S.N.; Errandonea, D. Temperature Dependent Crystal Structure of Nd2CuTiO6: An In Situ Low Temperature Powder Neutron Diffraction Study. Crystals 2023, 13, 503. https://doi.org/10.3390/cryst13030503
Kumar N, Kaushik SD, Rao KS, Babu PD, Deshpande SK, Achary SN, Errandonea D. Temperature Dependent Crystal Structure of Nd2CuTiO6: An In Situ Low Temperature Powder Neutron Diffraction Study. Crystals. 2023; 13(3):503. https://doi.org/10.3390/cryst13030503
Chicago/Turabian StyleKumar, N., S. D. Kaushik, K. Sandeep Rao, P. D. Babu, S. K. Deshpande, S. N. Achary, and Daniel Errandonea. 2023. "Temperature Dependent Crystal Structure of Nd2CuTiO6: An In Situ Low Temperature Powder Neutron Diffraction Study" Crystals 13, no. 3: 503. https://doi.org/10.3390/cryst13030503
APA StyleKumar, N., Kaushik, S. D., Rao, K. S., Babu, P. D., Deshpande, S. K., Achary, S. N., & Errandonea, D. (2023). Temperature Dependent Crystal Structure of Nd2CuTiO6: An In Situ Low Temperature Powder Neutron Diffraction Study. Crystals, 13(3), 503. https://doi.org/10.3390/cryst13030503