Dynamic Simulation of the Temperature Field of LiH Single Crystal Growth
Abstract
:1. Introduction
2. Experimental Device and Simulation Model
2.1. Bridgeman Device
- (1)
- The polycrystal LiH compact was placed in a pure iron crucible under low humidity and low oxygen condition, and the crucible was placed in a 316 L stainless steel reactor.
- (2)
- The reactor was first evacuated and filled with 400 kPa hydrogen. Then, the furnace was heated to 750 °C, and heat was preserved to melt the LiH completely.
- (3)
- The lower furnace was slowly cooled to a specific temperature (T, °C), and the cooling water was injected to make the LiH nucleate at the cone point.
- (4)
- The servo system launched to make the furnace rise slowly. Then, a temperature gradient was formed, and LiH was gradually solidified along the length direction.
2.2. Simulation Model and Parameters
3. Result and Discussion
3.1. The Temperature Field in Melting
3.2. Effect of Temperature Distribution in the Lower Furnace
3.3. Effect of Cooling Water
3.4. Effect of Furnace Rising Rate
4. Characterization of LiH Crystal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L. Hydrogen as a Fuel and Its Storage for Mobility and Transport. MRS Bull. 2002, 27, 675–679. [Google Scholar] [CrossRef]
- Chugunov, I.N.; Shevelev, A.E.; Gin, D.B.; Kiptily, V.G.; Gorini, G.; Nocente, M.; Tardocchi, M.; Doinikov, D.N.; Naidenov, V.O.; Khilkevitch, E.M. Development of gamma-ray diagnostics for ITER. Nucl. Fusion 2011, 51, 083010. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, C.D. Fabrication and properties of lithium hydride. Nucl. Eng. Des. 1973, 25, 309–314. [Google Scholar] [CrossRef]
- Wang, P.; Chang, F.; Gao, W.; Guo, J.; Wu, G.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Kaneko, T.; Hirayama, M.; Yonemura, M.; Imanari, Y.; Nakane, K.; Kanno, R. Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes. J. Power Sources 2012, 216, 249–255. [Google Scholar] [CrossRef]
- Michaely, A.; Janka, O.; Gießelmann, E.C.; Haberkorn, R.; Wiedemann, H.T.; Kay, C.W.; Kickelbick, G. Black Titania and Niobia within Ten Minutes–Mechanochemical Reduction of Metal Oxides with Alkali Metal Hydrides. Chem.–A Eur. J. 2023, e202300223. [Google Scholar] [CrossRef]
- Haertling, C.; Hanrahan, R.; Smith, R. A literature review of reactions and kinetics of lithium hydride hydrolysis. J. Nucl. Mater. 2006, 349, 195–233. [Google Scholar] [CrossRef]
- Ren, R.; Ortiz, A.L.; Markmaitree, T.; Osborn, W.; Shaw, L.L. Stability of Lithium Hydride in Argon and Air. J. Phys. Chem. B 2006, 110, 10567–10575. [Google Scholar] [CrossRef]
- Haertling, C.; Hanrahan, R.J.; Wang, Y.; Wetteland, C. Ion Beam Analyses of Moisture Reaction for Single Crystal Lithium Deuteride. MRS Adv. 2020, 5, 549–558. [Google Scholar] [CrossRef]
- Haertling, C.L.; Hanrahan, R.J.; Tesmer, J.R. Hydrolysis Studies of Polycrystalline Lithium Hydride. J. Phys. Chem. C 2007, 111, 1716–1724. [Google Scholar] [CrossRef]
- Pretzel, F.; Rushing, C. Properties of lithium hydride—II optical absorption by color centers. J. Phys. Chem. Solids 1961, 17, 232–245. [Google Scholar] [CrossRef]
- Holcombe, C.E., Jr.; Johnson, D.H. Lithium hydride single crystals. J. Cryst. Growth 1973, 19, 53–57. [Google Scholar] [CrossRef]
- Tyutyunnik, O.; Shulgin, B.; Oparin, D.; Pilipenko, G.; Gavrilov, F.; Tyutyunnik, V. Lithium hydride single crystal growth by bridgman-stockbarger method using ultrasound. J. Cryst. Growth 1984, 68, 741–746. [Google Scholar] [CrossRef]
- Pretzel, F.E.; Rupert, G.N.; Mader, C.L.; Storms, E.K.; Gritton, G.V.; Rushing, C.C. Properties of lithium hydride I. Single crystals. J. Phys. Chem. Solids 1960, 16, 10–20. [Google Scholar] [CrossRef]
- Lewis, W.; Pretzel, F. Properties of lithium hydride—III. Paramagnetic resonance of color centers. J. Phys. Chem. Solids 1961, 19, 139–146. [Google Scholar] [CrossRef]
- Pretzel, F.; Gritton, G.; Rushing, C.; Friauf, R.; Lewis, W.; Waldstein, P. Properties of lithium hydride—IV. J. Phys. Chem. Solids 1962, 23, 325–337. [Google Scholar] [CrossRef]
- Jin, M.; Bai, X.; Tang, Z.; Zhao, S.; Chen, Y.; Zhou, L.; Peng, Y.; Chen, X.; Xu, X. Fabrication of InSb crystal via Horizontal Bridgman method and investigation on its thermoelectric properties. Mater. Res. Bull. 2021, 142, 111411. [Google Scholar] [CrossRef]
- Chen, H.; Ge, C.; Li, R.; Wang, J.; Wu, C.; Zeng, X. Growth of lead molybdate crystals by vertical Bridgman method. Bull. Mater. Sci. 2005, 28, 555–560. [Google Scholar] [CrossRef]
- Cröll, A.; Volz, M.P. Detached Bridgman growth—A standard crystal growth method with a new twist. MRS Bull. 2009, 34, 245–250. [Google Scholar] [CrossRef]
- Liu, J.; Yao, G.; Cui, H.; Dong, S. Evolution of solid-liquid Interface of CdZnTe Growth by Vertical Bridgman Method. J. Synth. Cryst. 2003, 32, 555–562. [Google Scholar]
- Dupret, F.; Nicodème, P.; Ryckmans, Y.; Wouters, P.; Crochet, M. Global modelling of heat transfer in crystal growth furnaces. Int. J. Heat Mass Transf. 1990, 33, 1849–1871. [Google Scholar] [CrossRef]
- Virzi, A. Computer modelling of heat transfer in Czochralski silicon crystal growth. J. Cryst. Growth 1991, 112, 699–722. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, L.; Ding, G.; Yang, Y.; Lv, T.; Wu, M.; Liu, L. Numerical study of heat transfer during sapphire crystal growth by heat exchanger method. Int. J. Heat Mass Transf. 2014, 72, 452–460. [Google Scholar] [CrossRef]
- Kusama, T.; Omori, T.; Saito, T.; Kise, S.; Tanaka, T.; Araki, Y.; Kainuma, R. Ultra-large single crystals by abnormal grain growth. Nat. Commun. 2017, 8, 354. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol (Unit) | Value |
---|---|---|
Ampoule length | L1 (mm) | 450 |
Ampoule outer diameter | D1 (mm) | 36 |
Ampoule thickness | T1 (mm) | 2 |
Crucible outer diameter | D2 (mm) | 28 |
Crucible thickness | T2 (mm) | 2 |
Furnace chamber radius | D3 (mm) | 65 |
Hydrogen condition | P (kPa) | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Xie, D.; Wu, J.; Li, H.; Zhu, J.; Ni, M.; Gao, T.; Ye, X. Dynamic Simulation of the Temperature Field of LiH Single Crystal Growth. Crystals 2023, 13, 504. https://doi.org/10.3390/cryst13030504
Jiang Y, Xie D, Wu J, Li H, Zhu J, Ni M, Gao T, Ye X. Dynamic Simulation of the Temperature Field of LiH Single Crystal Growth. Crystals. 2023; 13(3):504. https://doi.org/10.3390/cryst13030504
Chicago/Turabian StyleJiang, Yingwu, Donghua Xie, Jiliang Wu, Huan Li, Jipeng Zhu, Muyi Ni, Tao Gao, and Xiaoqiu Ye. 2023. "Dynamic Simulation of the Temperature Field of LiH Single Crystal Growth" Crystals 13, no. 3: 504. https://doi.org/10.3390/cryst13030504
APA StyleJiang, Y., Xie, D., Wu, J., Li, H., Zhu, J., Ni, M., Gao, T., & Ye, X. (2023). Dynamic Simulation of the Temperature Field of LiH Single Crystal Growth. Crystals, 13(3), 504. https://doi.org/10.3390/cryst13030504