The Synthesis and Domain Structures of Single-Crystal-Like Mesoscale BaTiO3 Plates
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Synthesis of the Precursors and the BaTiO3 Plates
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Hippel, A. Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate. Rev. Mod. Phys. 1950, 22, 221–237. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef] [Green Version]
- Wendari, T.P.; Arief, S.; Mufti, N.; Blake, G.R.; Baas, J.; Suendo, V.; Prasetyo, A.; Insani, A.; Zulhadjri, Z. Lead-Free Aurivillius Phase Bi2LaNb1.5Mn0.5O9: Structure, Ferroelectric, Magnetic, and Magnetodielectric Effects. Inorg. Chem. 2022, 61, 8644–8652. [Google Scholar] [CrossRef] [PubMed]
- Janil Jamil, N.H.; Zainuddin, Z.; Hj Jumali, M.H.; Izzuddin, I.; Nadzir, L. Tetragonal Tungsten Bronze Phase Potential in Increasing the Piezoelectricity of Sol-Gel Synthesized (K0.5Na0.5)1-xLixNbO3 Ceramics. Ceram. Int. 2022, 48, 9324–9329. [Google Scholar] [CrossRef]
- Huang, C.; Wong-Ng, W.; Liu, W.F.; Zhang, X.N.; Jiang, Y.; Wu, P.; Tong, B.Y.; Zhao, H.; Wang, S.Y. Major Improvement of Ferroelectric and Optical Properties in Na-Doped Ruddlesden-Popper Layered Hybrid Improper Ferroelectric Compound, Ca3Ti2O7. J. Alloys Compd. 2019, 770, 582–588. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Bowen, C. Piezoelectric Effects and Electromechanical Theories at the Nanoscale. Nanoscale 2014, 6, 13314–13327. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Feng, X.; Wang, Z.; Xu, Q.; Bai, S.; Qin, Y.; Wang, Z.L. Ultrasensitive 2D ZnO Piezotronic Transistor Array for High Resolution Tactile Imaging. Adv. Mater. 2017, 29, 1606346. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Zhao, K.; Zhang, D.; Bowen, C.R.; Wang, Y.; Yang, Y. Piezoelectric Material-Polymer Composite Porous Foam for Efficient Dye Degradation via the Piezo-Catalytic Effect. ACS Appl. Mater. Interfaces 2019, 11, 27862–27869. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Messing, G.L.; Poterala, S.; Chang, Y.; Frueh, T.; Kupp, E.R.; Watson, B.H.; Walton, R.L.; Brova, M.J.; Hofer, A.K.; Bermejo, R.; et al. Texture-Engineered Ceramics - Property Enhancements through Crystallographic Tailoring. J. Mater. Res. 2017, 32, 3219–3241. [Google Scholar] [CrossRef] [Green Version]
- Moriana, A.D.; Zhang, S. Lead-Free Textured Piezoceramics Using Tape Casting: A Review. J. Mater. 2018, 4, 277–303. [Google Scholar] [CrossRef]
- Kalhori, H.; Amaechi, I.C.; Youssef, A.H.; Ruediger, A.; Pignolet, A. Catalytic Activity of BaTiO3 Nanoparticles for Wastewater Treatment: Piezo- or Sono-Driven? ACS Appl. Nano Mater. 2022, 6, 1686–1695. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Kim, D.; Franco, C.; Terzopoulou, A.; Veciana, A.; Puigmartí-Luis, J.; Chen, X.Z.; Nelson, B.J.; Pané, S. Enhanced Piezocatalytic Performance of BaTiO3 Nanosheets with Highly Exposed {001} Facets. Adv. Funct. Mater. 2022, 32, 2–9. [Google Scholar] [CrossRef]
- Remeika, J.P. A Method for Growing Barium Titanate Single Crystals. J. Am. Chem. Soc. 1954, 76, 940–941. [Google Scholar] [CrossRef]
- Merz, W.J. Double Hysteresis Loop of BaTiO3 at the Curie Point. Phys. Rev. 1953, 91, 513–517. [Google Scholar] [CrossRef]
- Liu, D.; Yan, Y.; Zhou, H. Synthesis of Micron-Scale Platelet BaTiO3. J. Am. Ceram. Soc. 2007, 90, 1323–1326. [Google Scholar] [CrossRef]
- Poterala, S.F.; Chang, Y.; Clark, T.; Meyer, R.J.; Messinge, G.L. Mechanistic Interpretation of the Aurivillius to Perovskite Topochemical Microcrystal Conversion Process. Chem. Mater. 2010, 22, 2061–2068. [Google Scholar] [CrossRef]
- Hao, M.; Fan, G.; Lou, Y.; Wen, Y.; Deng, H.; Wang, F.; Lv, W.; Yuchi, M.; Ding, M. Regular and Uniform-Shaped BaTiO3 Microplates Prepared Using a Modified Precursor. Ceram. Int. 2019, 45, 2338–2344. [Google Scholar] [CrossRef]
- Kržmanc, M.M.; Jančar, B.; Uršič, H.; Tramšek, M.; Suvorov, D. Tailoring the Shape, Size, Crystal Structure, and Preferential Growth Orientation of BaTiO3 Plates Synthesized through a Topochemical Conversion Process. Cryst. Growth Des. 2017, 17, 3210–3220. [Google Scholar] [CrossRef]
- Su, S.; Zuo, R.; Lv, D.; Fu, J. Synthesis and Characterization of (001) Oriented BaTiO3 Platelets through a Topochemical Conversion. Powder Technol. 2012, 217, 11–15. [Google Scholar] [CrossRef]
- Aurivillius, B. Mixed bismuth oxides with layer lattices: I. The structure type of CaNb2Bi2O9. Ark. For. Kemi. 1949, 1, 463–480. [Google Scholar]
- Pinczuk, A.; Taylor, W.; Burstein, E.; Lefkowitz, I. The Raman Spectrum of BaTiO3. Solid State Commun. 1967, 5, 429–433. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Z.; Wilson, J.D.; Banerjee, S.; Robinson, R.D.; Herman, I.P.; Laibowitz, R.; O’Brien, S. Barium Titanate Nanocrystals and Nanocrystal Thin Films: Synthesis, Ferroelectricity, and Dielectric Properties. J. Appl. Phys. 2006, 100, 034316. [Google Scholar] [CrossRef]
- Kharat, S.P.; Gaikwad, S.K.; Nalam, P.G.; Kambale, R.C.; James, A.R.; Kolekar, Y.D.; Ramana, C.V. Effect of Crystal Structure and Phase on the Dielectric, Ferroelectric, and Piezoelectric Properties of Ca2+- and Zr4+-Substituted Barium Titanate. Cryst. Growth Des. 2022, 22, 5571–5581. [Google Scholar] [CrossRef]
- Xu, K.; Zhu, G.; Xu, H.; Zhao, Y.; Jiang, K.; Zhang, X.; Yin, H.; Shangguan, M.; Wan, L.; Huang, T. The Colossal Permittivity Effect on BaTiO3 Induced by Different Sinter Atmosphere. Appl. Phys. A 2022, 128, 1044. [Google Scholar] [CrossRef]
- Pugachev, A.M.; Zaytseva, I.V.; Surovtsev, N.V.; Krylov, A.S. Anharmonicity and Local Noncentrosymmetric Regions in BaTiO3 Pressed Powder Studied by the Raman Line Temperature Dependence. Ceram. Int. 2020, 46, 22619–22623. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Cross, L.E.; Fousek, J. Domains in Ferroic Crystals and Thin Films; Springer: New York, NY, USA, 2010. [Google Scholar]
- Huan, Y.; Wang, X.; Fang, J.; Li, L. Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two-Step Sintering. J. Am. Ceram. Soc. 2013, 96, 3369–3371. [Google Scholar] [CrossRef]
- McQuaid, R.G.P.; McGilly, L.J.; Sharma, P.; Gruverman, A.; Gregg, J.M. Mesoscale Flux-Closure Domain Formation in Single-Crystal BaTiO3. Nat. Commun. 2011, 2, 404. [Google Scholar] [CrossRef] [Green Version]
- Howell, J.A.; Vaudin, M.D.; Cook, R.F. Orientation, Stress, and Strain in an (001) Barium Titanate Single Crystal with 90° Lamellar Domains Determined Using Electron Backscatter Diffraction. J. Mater. Sci. 2014, 49, 2213–2224. [Google Scholar] [CrossRef]
- McGilly, L.; Byrne, D.; Harnagea, C.; Schilling, A.; Gregg, J.M. Imaging Domains in BaTiO3 Single Crystal Nanostructures: Comparing Information from Transmission Electron Microscopy and Piezo-Force Microscopy. J. Mater. Sci. 2009, 44, 5197–5204. [Google Scholar] [CrossRef]
- Kittel, C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles. Phys. Rev. 1946, 70, 965–971. [Google Scholar] [CrossRef]
- Kittel, C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 1949, 21, 541. [Google Scholar] [CrossRef]
- Schilling, A.; Adams, T.B.; Bowman, R.M.; Gregg, J.M.; Catalan, G.; Scott, J.F. Scaling of Domain Periodicity with Thickness Measured in BaTiO3 Single Crystal Lamellae and Comparison with Other Ferroics. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 74, 1–6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Zhuang, J.; Quan, Y.; Zhao, J.; Wang, L.; Wang, Z.; Ren, W. The Synthesis and Domain Structures of Single-Crystal-Like Mesoscale BaTiO3 Plates. Crystals 2023, 13, 538. https://doi.org/10.3390/cryst13030538
Zheng K, Zhuang J, Quan Y, Zhao J, Wang L, Wang Z, Ren W. The Synthesis and Domain Structures of Single-Crystal-Like Mesoscale BaTiO3 Plates. Crystals. 2023; 13(3):538. https://doi.org/10.3390/cryst13030538
Chicago/Turabian StyleZheng, Kun, Jian Zhuang, Yi Quan, Jinyan Zhao, Lingyan Wang, Zhe Wang, and Wei Ren. 2023. "The Synthesis and Domain Structures of Single-Crystal-Like Mesoscale BaTiO3 Plates" Crystals 13, no. 3: 538. https://doi.org/10.3390/cryst13030538
APA StyleZheng, K., Zhuang, J., Quan, Y., Zhao, J., Wang, L., Wang, Z., & Ren, W. (2023). The Synthesis and Domain Structures of Single-Crystal-Like Mesoscale BaTiO3 Plates. Crystals, 13(3), 538. https://doi.org/10.3390/cryst13030538