Highly Efficient and Multiband Metamaterial Microstrip-Based Radiating Structure Design Showing High Gain Performance for Wireless Communication Devices
Abstract
:1. Introduction
2. Contribution of Proposed Structure
- The proposed simple structure helps to attain the multiband response to cover a broad range of applications.
- A metamaterial slot antenna with a high gain and the ability to operate on six different bands is presented for use in WLAN and earth observation applications.
- To achieve a multiband response, optimization of the feed point and changing the superstate layer’s height are carried out.
- The simulation and fabrication were performed using the low-profile FR4 substrate material.
- The antenna consists of a straightforward patch construction and a superstate design influenced by metamaterial rings.
- The addition of metamaterial rings in the patch gives a better response to the superstrate antenna design.
- The varying size of metamaterial rings carries out the optimization of the reflection coefficient.
- The study includes comparing the findings of simulation and measurements and the fabrication of an antenna construction employing low-profile FR4 material.
- The structure provides the minimum reflection coefficient of −49 dB with a bandwidth of 400 MHz.
- To determine the extent of the improvement, a comparison of the work being conducted here with that of other articles is included.
3. Antenna Structure Design
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, Y.; Chen, W.; Chen, X.; Yu, J. Analysis and Design of a Novel Multiband Antenna for Mobile Terminals. Int. J. Antennas Propag. 2015, 2015, 591269. [Google Scholar] [CrossRef] [Green Version]
- Malallah, R.; Shaaban, R.M.; Al-Tumah, W.A.G. A Dual Band Star-Shaped Fractal Slot Antenna: Design and Measurement. AEU–Int. J. Electron. Commun. 2020, 127, 153473. [Google Scholar] [CrossRef]
- Patel, S.K.; Lavadiya, S.P.; Parmar, J.; Ahmed, K.; Taya, S.A.; Das, S. Low-Cost, Multiband, High Gain and Reconfigurable Microstrip Radiating Structure Using PIN Diode for 5G/Wi-MAX/WLAN Applications. Phys. B Condens. Matter 2022, 639, 413972. [Google Scholar] [CrossRef]
- Li, Y.; Yu, W. A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications. Int. J. Antennas Propag. 2015, 2015, 146780. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, W.; Ye, Q. A Compact Asymmetric Coplanar Strip-Fed Dual-Band Antenna for 2.4/5.8 GHz Wlan Applications. Microw. Opt. Technol. Lett. 2013, 55, 2066–2070. [Google Scholar] [CrossRef]
- Yao, Y.; Yu, J.; Chen, X. Compact Multi-Band Planar Antenna Design. In Proceedings of the 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 4–7 December 2012; pp. 1328–1330. [Google Scholar]
- Yu, K.; Li, Y.; Wang, Y. Multi-Band Metamaterial-Based Microstrip Antenna for WLAN and WiMAX Applications. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium ACES 2017, Firenze, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar]
- Yoon, C.; Choi, S.H.; Lee, H.C.; Park, H.D. Small Microstrip Patch Antennas with Short-Pin Using a Dual-Band Operation. Microw. Opt. Technol. Lett. 2008, 50, 367–371. [Google Scholar] [CrossRef]
- Kumar, A.; Pharwaha, A.P.S. On the Design of Novel Half T-Square Strip Fractal Antenna. Int. J. Electron. 2021, 108, 1774–1789. [Google Scholar] [CrossRef]
- Dadhich, A.; Deegwal, J.K.; Sharma, M.M. Multiband Slotted Microstrip Patch Antenna for TD-LTE, ITU and X-Band Applications. In Proceedings of the 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 22–23 February 2018; pp. 745–748. [Google Scholar]
- Snehalatha, T.K.A.C.; Kumar, N. Design of Multiband Planar Antenna. In Proceedings of the 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), Bangalore, India, 24–26 November 2017; pp. 1–4. [Google Scholar]
- Naik, S.; Chari, A. Design of a Multiband Microstrip Patch Antenna for 4G Application. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–4. [Google Scholar]
- Sran, S.S.; Sivia, J.S. ANN and IFS Based Wearable Hybrid Fractal Antenna with DGS for S, C and X Band Application. AEU–Int. J. Electron. Commun. 2020, 127, 153425. [Google Scholar] [CrossRef]
- Weng, Z.-B.; Jiao, Y.-C.; Zhang, F.-S.; Song, Y.; Zhao, G. A Multi-Band Patch Antenna on Metamaterial Substrate. J. Electromagn. Waves Appl. 2008, 22, 445–452. [Google Scholar] [CrossRef]
- Jaydeep, S.; Sunil, L. An Investigation on Recent Trends in Metamaterial Types and Its Applications. i-manager’s J. Mater. Sci. 2018, 5, 55. [Google Scholar] [CrossRef]
- Sharma, N.; Singh Bhatia, S. Split Ring Resonator Based Multiband Hybrid Fractal Antennas for Wireless Applications. AEU–Int. J. Electron. Commun. 2018, 93, 39–52. [Google Scholar] [CrossRef]
- Sharma, N.; Bhatia, S.S. Metamaterial Inspired Fidget Spinner-Shaped Antenna Based on Parasitic Split Ring Resonator for Multi-Standard Wireless Applications. J. Electromagn. Waves Appl. 2020, 34, 1471–1490. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Kshetrimayum, R.S.; Sonkar, R.K. High Inter-Port Isolation Dual Circularly Polarized Slot Antenna with Split-Ring Resonator Based Novel Metasurface. AEU–Int. J. Electron. Commun. 2019, 107, 146–156. [Google Scholar] [CrossRef]
- Samson Daniel, R.; Pandeeswari, R.; Raghavan, S. Multiband Monopole Antenna Loaded with Complementary Split Ring Resonator and C-Shaped Slots. AEU–Int. J. Electron. Commun. 2017, 75, 8–14. [Google Scholar] [CrossRef]
- Kumar, A.; Althuwayb, A.A.; Chaturvedi, D.; Kumar, R.; Ahmadfard, F. Compact Planar Magneto-electric Dipole-like Circularly Polarized Antenna. IET Commun. 2022, 16, 2448–2453. [Google Scholar] [CrossRef]
- Kumar, A.; Imaculate Rosaline, S. Hybrid Half-Mode S.I.W. Cavity-Backed Diplex Antenna for on-Body Transceiver Applications. Appl. Phys. A 2021, 127, 834. [Google Scholar] [CrossRef]
- Kumar, A.; Chaturvedi, D.; Raghavan, S. Dual-Band, Dual-Fed Self-Diplexing Antenna. In Proceedings of the 13th European Conference on Antennas and Propagation, Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Rosaline, I.; Kumar, A.; Upadhyay, P.; Murshed, A.H. Four Element MIMO Antenna Systems with Decoupling Lines for High-Speed 5G Wireless Data Communication. Int. J. Antennas Propag. 2022, 2022, 9078929. [Google Scholar] [CrossRef]
- Ameen, M.; Mishra, A.; Chaudhary, R.K. Asymmetric CPW-Fed Electrically Small Metamaterial- Inspired Wideband Antenna for 3.3/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz WLAN Applications. AEU–Int. J. Electron. Commun. 2020, 119, 153177. [Google Scholar] [CrossRef]
- Sharma, V.; Lakwar, N.; Kumar, N.; Garg, T. Multiband Low-cost Fractal Antenna Based on Parasitic Split Ring Resonators. IET Microw. Antennas Propag. 2018, 12, 913–919. [Google Scholar] [CrossRef]
- Patel, S.K.; Lavadiya, S.P.; Parmar, J.; Ahmed, K.; Taya, S.A.; Das, S. Design and Fabrication of Reconfigurable, Broadband and High Gain Complementary Split-Ring Resonator Microstrip-Based Radiating Structure for 5G and WiMAX Applications. Waves Random Complex Media 2022, 1–31. [Google Scholar] [CrossRef]
- Rajak, N.; Chattoraj, N.; Mark, R. Metamaterial Cell Inspired High Gain Multiband Antenna for Wireless Applications. AEU–Int. J. Electron. Commun. 2019, 109, 23–30. [Google Scholar] [CrossRef]
- Hansen, R.C. Fundamental Limitations in Antennas. Proc. IEEE 1981, 69, 170–182. [Google Scholar] [CrossRef]
- Hertz, H. Ueber Strahlen Electrischer Kraft. Ann. Der Phys. 1889, 272, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Lavadiya, S.P.; Patel, S.K.; Ahmed, K.; Taya, S.A.; Das, S.; Babu, K.V. Design and Fabrication of Flexible and Frequency Reconfigurable Antenna Loaded with Copper, Distilled Water and Seawater Metamaterial Superstrate for IoT Applications. Int. J. RF Microw. Comput. Eng. 2022, 32, e23481. [Google Scholar] [CrossRef]
- Patel, S.K.; Lavadiya, S.P.; Parmar, J.; Das, S.; Ahmed, K.; Taya, S.A. Low-Cost, Compact, and Reconfigurable Antennas Using Complementary Split-Ring Resonator Metasurface for next-Generation Communication Systems. Int. J. Microw. Wirel. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- Xiao, P.; Wang, Z. 5.2 GHz CMOS Narrow-Band Optical Receiver for Radio-Over-Fiber. In Proceedings of the 2006 International Conference on Communications, Circuits and Systems, Guilin, China, 25–28 June 2006; pp. 1937–1941. [Google Scholar]
- Dhekial, R.P.; Bilagi, C.S. Endless Phase Shifter—Analysis and Design for 7.4 to 7.7 GHz Band. IETE Tech. Rev. 1993, 10, 247–256. [Google Scholar] [CrossRef]
- Kaushal, D.; Shanmuganantham, T. Design of a Compact and Novel Microstrip Patch Antenna for Multiband Satellite Applications. Mater. Today Proc. 2018, 5, 21175–21182. [Google Scholar] [CrossRef]
- Chung, M.-A.; Tseng, K.-C.; Meiy, I.-P. Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites. Vehicles 2023, 5, 55–74. [Google Scholar] [CrossRef]
- Aliqab, K.; Lavadiya, S.; Alsharari, M.; Armghan, A.; Daher, M.G.; Patel, S.K. Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna. Micromachines 2023, 14, 163. [Google Scholar] [CrossRef]
- Sumathi, K.; Lavadiya, S.; Yin, P.Z.; Parmar, J.; Patel, S.K. High Gain Multiband and Frequency Reconfigurable Metamaterial Superstrate Microstrip Patch Antenna for C/X/Ku-Band Wireless Network Applications. Wirel. Netw. 2021, 27, 2131–2146. [Google Scholar] [CrossRef]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, Z.; Park, G.-H.; Hedge, R.; Li, E.-P. A Unique Extraction of Metamaterial Parameters Based on Kramers–Kronig Relationship. IEEE Trans. Microw. Theory Tech. 2010, 58, 2646–2653. [Google Scholar] [CrossRef]
- Li, H.; Qin, M.; Wang, L.; Zhai, X.; Ren, R.; Hu, J. Total Absorption of Light in Monolayer Transition-Metal Dichalcogenides by Critical Coupling. Opt. Express 2017, 25, 31612. [Google Scholar] [CrossRef] [PubMed]
- Antar, Y.M.M. Microstrip Antenna Design Handbook; Artech House: Norwood, MA, USA, 2003; Volume 45, ISBN 0890065136. [Google Scholar]
- Zhu, J.; Eleftheriades, G.V. Dual-Band Metamaterial-Inspired Small Monopole Antenna for WiFi Applications. Electron. Lett. 2009, 45, 1104. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.; Saurav, K.; Srivastava, K.V. Multi-band Microstrip-fed Slot Antenna Loaded with Split-ring Resonator. Electron. Lett. 2014, 50, 1498–1500. [Google Scholar] [CrossRef]
- Chen, H.-D.; Yang, H.-W.; Sim, C.-Y.-D. Single Open-Slot Antenna for LTE/WWAN Smartphone Application. IEEE Trans. Antennas Propag. 2017, 65, 4278–4282. [Google Scholar] [CrossRef]
- Ali, T.; Biradar, R.C. A Compact Multiband Antenna Using λ /4 Rectangular Stub Loaded with Metamaterial for IEEE 802.11N and IEEE 802.16E. Microw. Opt. Technol. Lett. 2017, 59, 1000–1006. [Google Scholar] [CrossRef]
- Ali, T.; Mohammad Saadh, A.W.; Biradar, R.; Anguera, J.; Andújar, A. A Miniaturized Metamaterial Slot Antenna for Wireless Applications. AEU–Int. J. Electron. Commun. 2017, 82, 368–382. [Google Scholar] [CrossRef]
Band | First | Second | Third | Fourth |
---|---|---|---|---|
Resonating Frequency (GHz) | 5.22 | 7.771 | 8.881 | 10.891 |
Reflection coefficient Response (dB) | −24.08 | −18.84 | −30.43 | −49.00 |
Range of Tuning (GHz) | 5.071–5.561 | 7.531–7.881 | 8.671–9.041 | 10.671–11.071 |
Bandwidth (MHz) | 490 | 350 | 370 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armghan, A.; Lavadiya, S.; Alsharari, M.; Aliqab, K.; Daher, M.G.; Patel, S.K. Highly Efficient and Multiband Metamaterial Microstrip-Based Radiating Structure Design Showing High Gain Performance for Wireless Communication Devices. Crystals 2023, 13, 674. https://doi.org/10.3390/cryst13040674
Armghan A, Lavadiya S, Alsharari M, Aliqab K, Daher MG, Patel SK. Highly Efficient and Multiband Metamaterial Microstrip-Based Radiating Structure Design Showing High Gain Performance for Wireless Communication Devices. Crystals. 2023; 13(4):674. https://doi.org/10.3390/cryst13040674
Chicago/Turabian StyleArmghan, Ammar, Sunil Lavadiya, Meshari Alsharari, Khaled Aliqab, Malek G. Daher, and Shobhit K. Patel. 2023. "Highly Efficient and Multiband Metamaterial Microstrip-Based Radiating Structure Design Showing High Gain Performance for Wireless Communication Devices" Crystals 13, no. 4: 674. https://doi.org/10.3390/cryst13040674
APA StyleArmghan, A., Lavadiya, S., Alsharari, M., Aliqab, K., Daher, M. G., & Patel, S. K. (2023). Highly Efficient and Multiband Metamaterial Microstrip-Based Radiating Structure Design Showing High Gain Performance for Wireless Communication Devices. Crystals, 13(4), 674. https://doi.org/10.3390/cryst13040674