Linear-to-Dual-Circular Polarization Decomposition Metasurface Based on Rotated Trimming-Stub-Loaded Circular Patch
Abstract
:1. Introduction
2. General Concept and Metasurface Unit Cell Design
3. Operating Principle and Unit Cell Simulation
4. Full Metasurface Design
5. Experimental Demonstration
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caloz, C.; Achouri, K. Electromagnetic Metasurfaces: Theory and Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2021; p. 1. [Google Scholar]
- Holsteen, A.L.; Cihan, A.F.; Brongersma, M.L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 2019, 365, 257–260. [Google Scholar] [CrossRef]
- Keren-Zur, S.; Avayu, O.; Michaeli, L.; Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 2016, 3, 117–123. [Google Scholar] [CrossRef]
- Jia, X.; Wang, X.; Vahabzadeh, Y. Fast Computation of Resonant Metasurfaces in FDTD Scheme Using Dispersive Surface Susceptibility Model. IEEE Trans. Antennas Propag. 2023, 71, 713–722. [Google Scholar] [CrossRef]
- Wang, X.; Caloz, C. Spread-spectrum selective camouflaging based on time-modulated metasurface. IEEE Trans. Antennas Propag. 2020, 69, 286–295. [Google Scholar] [CrossRef]
- Ramaccia, D.; Sounas, D.L.; Alù, A.; Toscano, A.; Bilotti, F. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces. IEEE Trans. Antennas Propag. 2019, 68, 1607–1617. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.; Dong, Y. Pattern Reconfigurable, Low-Profile, Vertically Polarized, ZOR-Metasurface Antenna for 5G Application. IEEE Trans. Antennas Propag. 2022, 70, 6581–6591. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics 2018, 7, 1169–1190. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Sun, K.; Zhang, X.; Xiang, Y. Low-profile broadband metasurface antenna under multimode resonance. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1696–1700. [Google Scholar] [CrossRef]
- Faenzi, M.; Minatti, G.; González-Ovejero, D.; Caminita, F.; Martini, E.; Della Giovampaola, C.; Maci, S. Metasurface antennas: New models, applications and realizations. Sci. Rep. 2019, 9, 10178. [Google Scholar] [CrossRef]
- Wang, X.; Tong, M.S.; Yang, G.M. Multi-Focus Multi-Null Near-Field Transmitting Focused Metasurface. IEEE Trans. Antenna Propag. 2023, 71, 3172–3182. [Google Scholar] [CrossRef]
- Li, L.; Zhang, P.; Cheng, F.; Chang, M.; Cui, T.J. An Optically Transparent Near-Field Focusing Metasurface. IEEE Trans. Microw. Theory Tech. 2021, 69, 2015–2027. [Google Scholar] [CrossRef]
- Li, M.; Guo, L.; Dong, J.; Yang, H. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves. J. Phys. D Appl. Phys. 2014, 47, 185102. [Google Scholar] [CrossRef]
- Deng, T.; Liang, J.; Cai, T.; Wang, C.; Wang, X.; Lou, J.; Du, Z.; Wang, D. Ultra-thin and broadband surface wave meta-absorber. Opt. Express 2021, 29, 19193–19201. [Google Scholar] [CrossRef]
- Caloz, C.; Alù, A.; Tretyakov, S.; Sounas, D.; Achouri, K.; Deck-Léger, Z.L. Electromagnetic nonreciprocity. Phys. Rev. Appl. 2018, 10, 047001. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Li, X.; Li, S.; Zhou, P. 305–325 GHz Non-Reciprocal Isolator Based on Peak-Control Gain-boosting Magnetless Non-reciprocal Metamaterials. In Proceedings of the 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 7–9 June 2021; pp. 47–50. [Google Scholar]
- Jia, Y.; Liu, Y.; Guo, Y.J.; Li, K.; Gong, S. A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction. IEEE Trans. Antennas Propag. 2017, 65, 3291–3295. [Google Scholar] [CrossRef]
- Han, J.; Cao, X.; Gao, J.; Wei, J.; Zhao, Y.; Li, S.; Zhang, Z. Broadband radar cross section reduction using dual-circular polarization diffusion metasurface. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 969–973. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.M. Time-coding spread-spectrum reconfigurable intelligent surface for secure wireless communication: Theory and experiment. Opt. Express 2021, 29, 32031–32041. [Google Scholar] [CrossRef]
- Wang, X.; Caloz, C. Pseudorandom Sequence (Space-) Time-Modulated Metasurfaces: Principles, Operations, and Applications. IEEE Antennas Propag. Mag. 2022, 64, 135–144. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, W. Countering method for active jamming based on dual-polarization radar seeker. Int. J. Microw. Wirel. Technol. 2017, 9, 1067–1073. [Google Scholar] [CrossRef]
- He, Y.; Zhang, T.; He, H.; Zhang, P.; Yang, J. Polarization Anti-Jamming Interference Analysis with Pulse Accumulation. IEEE Trans. Signal Process. 2022, 70, 4772–4787. [Google Scholar] [CrossRef]
- Rajabalipanah, H.; Rouhi, K.; Abdolali, A.; Iqbal, S.; Zhang, L.; Liu, S. Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms. Nanophotonics 2020, 9, 2861–2877. [Google Scholar] [CrossRef]
- Wang, X.; Caloz, C. Phaser-based polarization-dispersive antenna and application to encrypted communication. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 2187–2188. [Google Scholar]
- Zhuang, Z.; Suh, S.W.; Patel, J. Polarization controller using nematic liquid crystals. Opt. Lett. 1999, 24, 694–696. [Google Scholar] [CrossRef]
- Ikeda, T.; Sasaki, T.; Ichimura, K. Photochemical switching of polarization in ferroelectric liquid-crystal films. Nature 1993, 361, 428–430. [Google Scholar] [CrossRef]
- Fu, H.; Cohen, R.E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000, 403, 281–283. [Google Scholar] [CrossRef]
- Khan, M.I.; Fraz, Q.; Tahir, F.A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J. Appl. Phys. 2017, 121, 045103. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.M. Linear-polarization metasurface converter with an arbitrary polarization rotating angle. Opt. Express 2021, 29, 30579–30589. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.; Peng, C.; Chen, Z.; Wang, X. C-Band Linear Polarization Metasurface Converter with Arbitrary Polarization Rotation Angle Based on Notched Circular Patches. Crystals 2022, 12, 1646. [Google Scholar] [CrossRef]
- Li, J.; Kong, X.; Wang, J.; Miao, Z.; Wang, X.; Shen, X.; Zhao, L. Dual-band polarization-insensitive orbital angular momentum beam generation based on 1-bit polarization-converting transmitting coding metasurface. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23397. [Google Scholar] [CrossRef]
- Li, S.J.; Han, B.W.; Li, Z.Y.; Liu, X.B.; Huang, G.S.; Li, R.Q.; Cao, X.Y. Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt. Express 2022, 30, 26362–26376. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Wang, C.; Gan, L.; Yang, X.; Sun, L. Dual-band dual-rotational-direction angular stable linear-to-circular polarization converter. IEEE Trans. Antennas Propag. 2022, 70, 6054–6059. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Q.; Guo, J.X.; Chu, P.; Huo, W.J.; Xing, Z.; Huang, B.G.; Wu, L. Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface. Phys. Rev. Appl. 2018, 9, 024038. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 1984, 392, 45–57. [Google Scholar]
- Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci.-Sect. A 1956, 44, 398–417. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, S.J.; Han, B.W.; Huang, G.S.; Guo, Z.X.; Cao, X.Y. Quad-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously. Adv. Theory Simul. 2021, 4, 2100117. [Google Scholar] [CrossRef]
- Gao, X.; Yang, W.L.; Ma, H.F.; Cheng, Q.; Yu, X.H.; Cui, T.J. A reconfigurable broadband polarization converter based on an active metasurface. IEEE Trans. Antennas Propag. 2018, 66, 6086–6095. [Google Scholar] [CrossRef]
- Lin, B.; Lv, L.; Guo, J.; Liu, Z.; Ji, X.; Wu, J. An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface. IEEE Access 2020, 8, 82732–82740. [Google Scholar] [CrossRef]
Works | Beam Deflection | Scattered Polarization | Substrate Layers | Substrate Thickness | Metasurface Type | Operating Band |
---|---|---|---|---|---|---|
Ref. [33] | Yes | LHCP + RHCP | single | 3.00 mm | transmissive | X |
Ref. [40] | No | LHCP/RHCP | single | 3.50 mm | transmissive | C/X |
Ref. [41] | No | LP + LHCP/RHCP | single | 6.00 mm | reflective | C |
Ref. [42] | No | LHCP/RHCP | double | 7.30 mm | reflective | X-K |
Ref. [34] | No | LHCP/RHCP | single | 0.80 mm | reflective | K_a/V |
This work | Yes | LHCP + RHCP | single | 1.524 mm | reflective | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, H.; Peng, C.; Chen, Z. Linear-to-Dual-Circular Polarization Decomposition Metasurface Based on Rotated Trimming-Stub-Loaded Circular Patch. Crystals 2023, 13, 831. https://doi.org/10.3390/cryst13050831
Zhang T, Wang H, Peng C, Chen Z. Linear-to-Dual-Circular Polarization Decomposition Metasurface Based on Rotated Trimming-Stub-Loaded Circular Patch. Crystals. 2023; 13(5):831. https://doi.org/10.3390/cryst13050831
Chicago/Turabian StyleZhang, Tao, Haoran Wang, Chongmei Peng, and Zhaohui Chen. 2023. "Linear-to-Dual-Circular Polarization Decomposition Metasurface Based on Rotated Trimming-Stub-Loaded Circular Patch" Crystals 13, no. 5: 831. https://doi.org/10.3390/cryst13050831
APA StyleZhang, T., Wang, H., Peng, C., & Chen, Z. (2023). Linear-to-Dual-Circular Polarization Decomposition Metasurface Based on Rotated Trimming-Stub-Loaded Circular Patch. Crystals, 13(5), 831. https://doi.org/10.3390/cryst13050831