Intrafibrillar Growth of Hydroxyapatite Nanocrystals in Multiscale Collagen
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Growth of HAP Nanocrystals in Collagen Fibrils
2.2. Morphology and Internal Structures of Collagen Fibrils with HAP Nanocrystals
2.3. Composition Analysis of Collagen Fibrils with HAP Nanocrystals
2.4. The Growth of HAP Nanocrystals in Collagen Films
2.5. The Growth Process of HAP Nanocrystals in Collagen Films In Situ
2.6. The Growth Process of HAP Nanocrystals in Collagen Films in Different Conditions
3. Results and Discussion
3.1. The Certification of Intrafibrillar Growth of HAP Nanocrystals
3.2. The Intrafibrillar Growth Process of HAP Nanocrystals
3.3. The Intrafibrillar Growth Process of HAP Nanocrystals in Collagen Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterlik, H.; Roschger, P.; Klaushofer, K.; Fratzl, P. From brittle to ductile fracture of bone. Nat. Mater. 2006, 5, 52–55. [Google Scholar] [CrossRef]
- Mayer, G. Rigid biological systems as models for synthetic composites. Science 2005, 310, 1144–1147. [Google Scholar] [CrossRef]
- Currey, J.D. Materials science—Hierarchies in biomineral structures. Science 2005, 309, 253–254. [Google Scholar] [CrossRef]
- Olszta, M.J.; Cheng, X.G.; Jee, S.S.; Kumar, R.; Kim, Y.Y.; Kaufman, M.J.; Douglas, E.P.; Gower, L.B. Bone structure and formation: A new perspective. Mater. Sci. Eng. R-Rep. 2007, 58, 77–116. [Google Scholar] [CrossRef]
- Fratzl, P. Collagen: Structure and Mechanics, an Introduction. In Collagen: Structure and Mechanics; Fratzl, P., Ed.; Springer: Boston, MA, USA, 2008; pp. 1–13. [Google Scholar] [CrossRef]
- Monzur, M. Mechanism of Bone Mineralization. Cold Spring Harb. Perspect. Med. 2018, 8, a031229. [Google Scholar]
- Nudelman, F.F.; Pieterse, K.K.; George, A.; Bomans, P.P.; Friedrich, H.H.; Brylka, L.L.; Hilbers, P.P.; Sommerdijk, N.A.N. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010, 9, 1004–1009. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Afonin, I.S.; Evdokimov, I.O.; Mayorov, V.Y.; Portnyagin, A.S.; Agafonova, I.G.; Skurikhina, Y.E.; Medkov, M.A. Synthetic CaSiO3 sol-gel powder and SPS ceramic derivatives: “In vivo” toxicity assessment. Prog. Nat. Sci. Mater. Int. 2019, 29, 569–575. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Portnyagin, A.S.; Yu, M.V.; Yu, B.I.; Merkulov, E.B.; Kaidalova, T.A.; Modin, E.B.; Afonin, I.S.; et al. Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: “In vitro” and “in vivo” biocompatibility assessment. Powder Technol. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Olszta, M.J.; Douglas, E.P.; Gower, L.B. Intrafibrillar mineralization of collagen using a liquid-phase mineral precursor. In Proceedings of the Symposium on Materials Inspired by Biology held at the MRS Spring Meeting, San Francisco, CA, USA, 21–25 April 2003; pp. 127–134. [Google Scholar]
- Deshpande, A.S.; Beniash, E. Bioinspired synthesis of mineralized collagen fibrils. Cryst. Growth Des. 2008, 8, 3084–3090. [Google Scholar] [CrossRef] [PubMed]
- Ping, H.; Xie, H.; Su, B.L.; Cheng, Y.B.; Wang, W.M.; Wang, H.; Wang, Y.C.; Zhang, J.Y.; Zhang, F.; Fu, Z.Y. Organized intrafibrillar mineralization, directed by a rationally designed multi-functional protein. J. Mat. Chem. B 2015, 3, 4496–4502. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Ping, H.; Wagermaier, W.; Jin, S.; Amini, S.; Fratzl, P.; Sha, G.; Xia, F.; Wu, J.; Xie, H.; et al. Rapid collagen-directed mineralization of calcium fluoride nanocrystals with periodically patterned nanostructures. Nanoscale 2021, 13, 8293–8303. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Ping, H.; Li, X.; Liu, X.; Wan, F.; Tu, B.; Xie, H.; O’Reilly, P.; Wang, H.; Wang, W.; et al. Oriented Strontium Carbonate Nanocrystals within Collagen Films for Flexible Piezoelectric Sensors. Adv. Funct. Mater. 2021, 31, 2105806. [Google Scholar] [CrossRef]
- Cölfen, H. A crystal-clear view. Nat. Mater. 2010, 9, 960–961. [Google Scholar] [CrossRef]
- Dey, A.; Bomans, P.H.H.; Muller, F.A.; Will, J.; Frederik, P.M.; de With, G.; Sommerdijk, N. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 2010, 9, 1010–1014. [Google Scholar] [CrossRef]
- Niu, L.-n.; Jee, S.E.; Jiao, K.; Tonggu, L.; Li, M.; Wang, L.; Yang, Y.-d.; Bian, J.-h.; Breschi, L.; Jang, S.S.; et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat. Mater. 2017, 16, 370–378. [Google Scholar] [CrossRef]
- Price, P.A.; Toroian, D.; Lim, J.E. Mineralization by Inhibitor Exclusion the Calcification of Collagen with Fetuin. J. Biol. Chem. 2009, 284, 17092–17101. [Google Scholar] [CrossRef]
- Yao, S.S.; Lin, X.F.; Xu, Y.F.; Chen, Y.W.; Qiu, P.C.; Shao, C.Y.; Jin, B.; Mu, Z.; Sommerdijk, N.; Tang, R.K. Osteoporotic Bone Recovery by a Highly Bone-Inductive Calcium Phosphate Polymer-Induced Liquid-Precursor. Adv. Sci. 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Olszta, M.J.; Douglas, E.P.; Gower, L.B. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif. Tissue Int. 2003, 72, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.; Price, P.A. Disaggregation of bone into crystals. Calcif. Tissue Int. 1986, 39, 365–375. [Google Scholar] [CrossRef]
- Nudelman, F.; Bomans, P.H.H.; George, A.; de With, G.; Sommerdijk, N. The role of the amorphous phase on the biomimetic mineralization of collagen. Faraday Discuss. 2012, 159, 357–370. [Google Scholar] [CrossRef]
- Qi, Y.P.; Ye, Z.; Fok, A.; Holmes, B.N.; Espanol, M.; Ginebra, M.P.; Aparicio, C. Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen. ACS Biomater. Sci. Eng. 2018, 4, 2758–2766. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.X.; Guo, J.X.; Lin, X.X.; Chen, S.P.; Mai, S. Influence of molecular weight and concentration of carboxymethyl chitosan on biomimetic mineralization of collagen. RSC Adv. 2020, 10, 12970–12981. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Chen, Y.; Li, L.; Sun, J.; Gu, X.H.; Xu, X.R.; Pan, H.H.; Tang, R.K. Remineralization of dentin collagen by meta-stabilized amorphous calcium phosphate. Crystengcomm 2013, 15, 6151–6158. [Google Scholar] [CrossRef]
pH Value | PAA | ||
---|---|---|---|
50 μg/mL | 100 μg/mL | 150 μg/mL | |
6.5 | No growth | No growth | No growth |
7.0 | No growth | No growth | No growth |
7.5 | 77.5 ± 4.3% | 30.6 ± 7.7% | 7.3 ± 1.2% |
8.0 | EX-growth | 51.8 ± 6.7% | 13.3 ± 2.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, B.; Li, Y.; Fu, Z.; Ping, H.; Wang, K. Intrafibrillar Growth of Hydroxyapatite Nanocrystals in Multiscale Collagen. Crystals 2023, 13, 692. https://doi.org/10.3390/cryst13040692
Xue B, Li Y, Fu Z, Ping H, Wang K. Intrafibrillar Growth of Hydroxyapatite Nanocrystals in Multiscale Collagen. Crystals. 2023; 13(4):692. https://doi.org/10.3390/cryst13040692
Chicago/Turabian StyleXue, Bingyu, Yidi Li, Zhengyi Fu, Hang Ping, and Kun Wang. 2023. "Intrafibrillar Growth of Hydroxyapatite Nanocrystals in Multiscale Collagen" Crystals 13, no. 4: 692. https://doi.org/10.3390/cryst13040692
APA StyleXue, B., Li, Y., Fu, Z., Ping, H., & Wang, K. (2023). Intrafibrillar Growth of Hydroxyapatite Nanocrystals in Multiscale Collagen. Crystals, 13(4), 692. https://doi.org/10.3390/cryst13040692