Review on the Corrosion Behaviour of Nickel-Based Alloys in Supercritical Carbon Dioxide under High Temperature and Pressure
Abstract
:1. Introduction
2. Corrosion Mechanism
2.1. Corrosion Reaction Processes
2.1.1. Oxidation
2.1.2. Carburization
2.2. Corrosion Behaviour and Resistance of Different Metallic Materials
2.3. Summary
- Factors associated with the alloying elements, such as chromium, molybdenum, tungsten, niobium and so on;
- Parameters related to the corrosion environment of nickel-based alloy such as temperature, pressure, impurities and flow rate.
3. Factors Associated with the Alloying Elements
3.1. Major Elements
3.1.1. Effect of Fe and Ni Content
3.1.2. Effect of Cr Content
3.2. Trace Elements
3.2.1. Effect of Co Content
3.2.2. Effect of Ti Content
3.2.3. Effect of Al Content
3.2.4. Effect of Si Content
3.2.5. Effect of Mn Content
3.3. Summary
4. Parameters Related to the Corrosion Environment
4.1. Effect of Temperature and Pressure
4.1.1. Effect of Temperature
4.1.2. Effect of Pressure
4.1.3. Summary
4.2. Effect of Impurities
4.2.1. Effect of H2O
4.2.2. Effect of O2
4.2.3. Effect of H2O + O2
4.2.4. Effect of CO
4.2.5. Effect of SO2
4.3. Effect of Flow Rate
5. Conclusions and Outlook
- For the corrosion mechanism, the corrosion process of materials in S-CO2 is mainly controlled by ion diffusion, and the corrosion process is divided into oxidation and carburization. Nickel-based alloys have better corrosion resistance than austenitic stainless steel and ferritic/martensitic steel, because nickel-based alloys can form a dense oxide layer to prevent further corrosion. In addition, the nickel matrix has a lower activity of Cr and lower solubility and diffusivity of C.
- The factors affecting the corrosion behaviour of nickel-based alloys in S-CO2 environments can be mainly divided into two categories: the content of alloying elements and environmental factors.
- Alloying elements can be divided into major elements and trace elements, and these elements play a decisive role in the corrosion resistance of nickel-based alloy. For major elements, the resistance of the alloy to oxidation and carburization increases with the increase of Ni and Cr content. However, for trace elements, the effect of some elements on the corrosion resistance of the alloy should be analyzed according to the specific situation.
- Temperature is one of the most significant factors that affect alloy corrosion behaviour. Under high-temperature conditions, the corrosion of alloys in S-CO2 will be aggravated, especially oxidation. However, carburization may reduce with increasing temperature under certain conditions.
- Increases in pressure will increase the oxidation and carburization rate, thus accelerating corrosion. In some cases, a denser layer will also be formed, increasing the corrosion resistance of the alloys.
- The presence of impurities such as O2, H2O, CO and SO2 usually accelerates the corrosion of alloys in S-CO2. The addition of O2 (with H2O) and CO will speed up the oxidation process. The formed oxide layer will thicken, spallation will occur, and the corrosion will be aggravated. As an acidic medium, SO2 will accelerate the corrosion of alloys as well.
- Compared with the above factors, the flow rate has little effect on the corrosion of alloys in S-CO2, which mainly changes the chemical environment of the alloy surface, promotes mass transfer and imposes shear stress.
- The working environment of candidate alloys in the Brayton cycle is harsh; thus, stress is likely to exist. The corrosion behaviour of alloys with stress should be considered and studied in the future.
- The effects of some trace alloying elements on the corrosion resistance of the alloy are seldom studied. The corrosion behaviour of these elements in S-CO2 should be defined.
- Studies on the effect of S-CO2 flow rate on alloy corrosion behaviour are currently lacking due to obstacles in experimental equipment. Research should be conducted after the problem of experimental equipment is solved.
- The integrity of the corrosion-resistant oxide layer would depend on the effective pinning of the inner layer when the corrosion layers are multiple. Thus, how the inherent impurities of the alloy will affect the pinning phenomenon should be discussed.
- Surface coating, as a nanocrystaline microstructure, is widely used in corrosion protection. However, the effect of Ni-based alloys with nanocrystaline microstructure on S-CO2 corrosion has not given attention. Further studies should pay attention to this area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tušek, L.; Golob, V.; Knez, Ž. The Effect of Pressure and Temperature on Supercritical CO2 Dyeing of PET-Dyeing with Mixtures of Dyes. Int. J. Polym. Mater. Polym. Biomater. 2000, 47, 657–665. [Google Scholar] [CrossRef]
- Zhu, Z.; Cheng, Y.; Xiao, B.; Khan, H.I.; Xu, H.; Zhang, N. Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide. Energy 2019, 175, 1075–1084. [Google Scholar] [CrossRef]
- Pourmehran, O.; Sarafraz, M.; Rahimi-Gorji, M.; Ganji, D. Rheological behaviour of various metal-based nano-fluids between rotating discs: A new insight. J. Taiwan Inst. Chem. Eng. 2018, 88, 37–48. [Google Scholar] [CrossRef]
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Firouzdor, V.; Sridharan, K.; Cao, G.; Anderson, M.; Allen, T. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment. Corros. Sci. 2013, 69, 281–291. [Google Scholar] [CrossRef]
- Endo, H.; Netchaev, A.; Yoshimura, K.; Arie, K.; Yamadate, M.; Sawada, T.; Ninokata, H. A concept of the multipurpose liquid metallic-fueled fast reactor system (MPFR). Prog. Nucl. Energy 2000, 37, 291–298. [Google Scholar] [CrossRef]
- Xu, J.; Sun, E.; Li, M.; Liu, H.; Zhu, B. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant. Energy 2018, 157, 227–246. [Google Scholar] [CrossRef]
- Cheang, V.; Hedderwick, R.; McGregor, C. Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power. Sol. Energy 2015, 113, 199–211. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, Y.; Hu, S. Design and performance analysis of compressed CO2 energy storage of a solar power tower generation system based on the S-CO2 Brayton cycle. Energy Convers. Manag. 2021, 249, 114856. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.; Yang, Z.; Li, X.; Xu, G.; Yang, Y. An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle. Appl. Energy 2018, 231, 1319–1329. [Google Scholar] [CrossRef]
- Sarrade, S.; Féron, D.; Rouillard, F.; Perrin, S.; Robin, R.; Ruiz, J.-C.; Turc, H.-A. Overview on corrosion in supercritical fluids. J. Supercrit. Fluids 2017, 120, 335–344. [Google Scholar] [CrossRef]
- Rouillard, F.; Furukawa, T. Corrosion of 9-12Cr ferritic–martensitic steels in high-temperature CO2. Corros. Sci. 2016, 105, 120–132. [Google Scholar] [CrossRef]
- Tan, L.; Anderson, M.; Taylor, D.; Allen, T. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros. Sci. 2011, 53, 3273–3280. [Google Scholar] [CrossRef]
- Li, K.; Zhu, Z.; Xiao, B.; Luo, J.-L.; Zhang, N. State of the art overview material degradation in high-temperature supercritical CO2 environments. Prog. Mater. Sci. 2023, 136, 101107. [Google Scholar] [CrossRef]
- Yang, L.; Qian, H.; Kuang, W. Corrosion Behaviors of Heat-Resisting Alloys in High Temperature Carbon Dioxide. Materials 2022, 15, 1331. [Google Scholar] [CrossRef]
- Jing, J.; Chen, Z.; Feng, C. Using the photoinduced volt-ampere curves to study the p/n types of the corrosion products with semiconducting properties. J. Electroanal. Chem. 2021, 881, 114961. [Google Scholar] [CrossRef]
- Gheno, T.; Monceau, D.; Zhang, J.; Young, D. Carburisation of ferritic Fe–Cr alloys by low carbon activity gases. Corros. Sci. 2011, 53, 2767–2777. [Google Scholar] [CrossRef]
- Gui, Y.; Liang, Z.; Zhao, Q. Corrosion and Carburization Behavior of Heat-Resistant Steels in a High-Temperature Supercritical Carbon Dioxide Environment. Oxid. Met. 2019, 92, 123–136. [Google Scholar] [CrossRef]
- Liang, Z.; Gui, Y.; Zhao, Q. Experimental Study on Corrosion Characteristics of Three Typical Heat-resistant Steels under Supercritical Carbon Dioxide. J. Xi’an Jiaotong Univ. 2019, 53, 23–29. [Google Scholar]
- Liang, Z.; Gui, Y.; Zhao, Q. Study on Corrosion Behaviour and Mechanism of Typical Heat-Resistant STEEL under Supercritical Carbon Dioxide Chinese Academy of Engineering. In Proceedings of the Chinese Society for Corrosion and Protection, Summary Set of the Tenth National Corrosion Conference, Nanchang, China, 24 October 2019. [Google Scholar] [CrossRef]
- Yang, H.; Liu, W.; Gong, B.; Jiang, E.; Huang, Y.; Zhang, G.; Zhao, Y. Corrosion behavior of typical structural steels in 500 °C, 600 °C and high pressure supercritical carbon dioxide conditions. Corros. Sci. 2021, 192, 109801. [Google Scholar] [CrossRef]
- Song, L.; Chen, Z.; Hou, B. The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light. Corros. Sci. 2015, 93, 191–200. [Google Scholar] [CrossRef]
- Rouillard, F.; Charton, F.; Moine, G. Corrosion Behavior of Different Metallic Materials in Supercritical Carbon Dioxide at 550 °C and 250 bars. Corrosion 2011, 67, 095001. [Google Scholar] [CrossRef]
- Meier, G.H.; Jung, K.; Mu, N.; Yanar, N.M.; Pettit, F.S.; Abellán, J.P.; Olszewski, T.; Hierro, L.N.; Quadakkers, W.J.; Holcomb, G. Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe–Cr and Fe–Cr–X Alloys. Oxid. Met. 2010, 74, 319–340. [Google Scholar] [CrossRef]
- Singh, R.; Venkataraman, M.B. High Temperature Corrosion and Oxidation of Metals. Metals 2019, 9, 942. [Google Scholar] [CrossRef]
- Glarborg, P.; Bentzen, L.L.B. Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane. Energy Fuels 2007, 22, 291–296. [Google Scholar] [CrossRef]
- Cao, G.; Firouzdor, V.; Sridharan, K.; Anderson, M.; Allen, T. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corros. Sci. 2012, 60, 246–255. [Google Scholar] [CrossRef]
- Chen, H.; Kim, S.H.; Kim, C.; Chen, J.; Jang, C. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 °C. Corros. Sci. 2019, 156, 16–31. [Google Scholar] [CrossRef]
- Gui, Y.; Liang, Z.; Shao, H.; Zhao, Q. Corrosion behavior and lifetime prediction of VM12, Sanicro 25 and Inconel 617 in supercritical carbon dioxide at 600 °C. Corros. Sci. 2020, 175, 108870. [Google Scholar] [CrossRef]
- Liang, Z.; Gui, Y.; Wang, Y.; Zhao, Q. Corrosion performance of heat-resisting steels and alloys in supercritical carbon dioxide at 650 °C and 15 MPa. Energy 2019, 175, 345–352. [Google Scholar] [CrossRef]
- Teeter, L.; Adam, B.; Wood, T.; Tucker, J. Comparison of the corrosion of materials in supercritical carbon dioxide, air, and argon environments. Corros. Sci. 2021, 192, 109752. [Google Scholar] [CrossRef]
- Pint, B.A.; Pillai, R.; Lance, M.J.; Keiser, J.R. Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. Oxid. Met. 2020, 94, 505–526. [Google Scholar] [CrossRef]
- Kim, D.; Kim, D.; Lee, H.J.; Jang, C.; Yoon, D.J. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen. J. Nucl. Mater. 2013, 441, 612–622. [Google Scholar] [CrossRef]
- Oleksak, R.P.; Holcomb, G.R.; Carney, C.S.; Doğan, Ö.N. Carburization susceptibility of chromia-forming alloys in high-temperature CO2. Corros. Sci. 2022, 206, 110488. [Google Scholar] [CrossRef]
- Adam, B.; Teeter, L.; Mahaffey, J.; Anderson, M.; Árnadóttir, L.; Tucker, J.D. Effects of Corrosion in Supercritical CO2 on the Microstructural Evolution in 800H Alloy. Oxid. Met. 2018, 90, 453–468. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.; Kim, S.H.; Jang, C. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment. Corros. Sci. 2015, 99, 227–239. [Google Scholar] [CrossRef]
- Oleksak, R.P.; Carney, C.S.; Holcomb, G.R.; Doğan, Ö.N. Structural Evolution of a Ni Alloy Surface During High-Temperature Oxidation. Oxid. Met. 2018, 90, 27–42. [Google Scholar] [CrossRef]
- Oleksak, R.P.; Addou, R.; Gwalani, B.; Baltrus, J.P.; Liu, T.; Diulus, J.T.; Devaraj, A.; Herman, G.S.; Doğan, Ö.N. Molecular-scale investigation of the oxidation behavior of chromia-forming alloys in high-temperature CO2. Npj Mater. Degrad. 2021, 5, 46. [Google Scholar] [CrossRef]
- Rouillard, F.; Moine, G.; Tabarant, M.; Ruiz, J.C. Corrosion of 9Cr Steel in CO2 at Intermediate Temperature II: Mechanism of Carburization. Oxid. Met. 2012, 77, 57–70. [Google Scholar] [CrossRef]
- Olivares, R.I.; Young, D.J.; Marvig, P.; Stein, W. Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature. Oxid. Met. 2015, 84, 585–606. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Z.; Li, L.; Cheng, J.; Su, H.; Zhang, L. Revealing the long-term oxidation and carburization mechanism of 310S SS and Alloy 800H exposed to supercritical carbon dioxide. Mater. Charact. 2022, 183, 111603. [Google Scholar] [CrossRef]
- Subramanian, G.O.; Lee, H.J.; Kim, S.H.; Jang, C. Corrosion and Carburization Behaviour of Ni-xCr Binary Alloys in a High-Temperature Supercritical-Carbon Dioxide Environment. Oxid. Met. 2018, 89, 683–697. [Google Scholar] [CrossRef]
- Oleksak, R.P.; Tylczak, J.H.; Holcomb, G.R.; Doğan, Ö.N. High temperature oxidation of Ni alloys in CO2 containing impurities. Corros. Sci. 2019, 157, 20–30. [Google Scholar] [CrossRef]
- Davis, J.R. Nickel, Cobalt, and Their Alloys; ASM International: Almere, The Netherlands, 2000. [Google Scholar]
- Subramanian, G.O.; Kim, S.H.; Chen, J.; Jang, C. Supercritical-CO2 corrosion behavior of alumina- and chromia-forming heat resistant alloys with Ti. Corros. Sci. 2021, 188, 109531. [Google Scholar] [CrossRef]
- Liang, Z.; Yu, M.; Gui, Y.; Zhao, Q. Corrosion Behavior of Heat-Resistant Materials in High-Temperature Carbon Dioxide Environment. Jom 2018, 70, 1464–1470. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, E.; Liu, W.; Yang, H.; Wu, Y.; Huang, Y. Compatibility of Different Commercial Alloys in High-Temperature, Supercritical Carbon Dioxide. Materials 2022, 15, 4456. [Google Scholar] [CrossRef]
- Lehmusto, J.; Ievlev, A.V.; Cakmak, E.; Keiser, J.R.; Pint, B.A. A Tracer Study on sCO2 Corrosion with Multiple Oxygen-Bearing Impurities. Oxid. Met. 2021, 96, 571–587. [Google Scholar] [CrossRef]
- Naoumidis, A.; Schulze, H.; Jungen, W.; Lersch, P. Phase studies in the chromium-manganese-titanium oxide system at different oxygen partial pressures. J. Eur. Ceram. Soc. 1991, 7, 55–63. [Google Scholar] [CrossRef]
- Pint, B.A.; Keiser, J.R. Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2. Jom 2015, 67, 2615–2620. [Google Scholar] [CrossRef]
- McCarroll, I.; La Fontaine, A.; Nguyen, T.; Smith, A.; Zhang, J.; Young, D.; Cairney, J. Performance of an FeCrAl alloy in a high-temperature CO2 environment. Corros. Sci. 2018, 139, 267–274. [Google Scholar] [CrossRef]
- Pint, B.A.; Keiser, J.R. The effect of temperature on the sCO2 compatibility of conventional structural alloys. In Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 9–10 September 2014; pp. 1–13. [Google Scholar]
- Oleksak, R.P.; Carney, C.S.; Doğan, Ö.N. Effect of pressure on high-temperature oxidation of Ni alloys in supercritical CO2 containing impurities. Corros. Sci. 2023, 215, 111055. [Google Scholar] [CrossRef]
- Costa, G.; Garg, A.; Brady, M.P. Corrosion of alumina-forming austenitic alloys under the supercritical carbon dioxide-based venus atmospheric surface conditions. Corros. Sci. 2023, 211, 110882. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.H.; Kim, H.; Jang, C. Corrosion and carburization behavior of Al-rich surface layer on Ni-base alloy in supercritical-carbon dioxide environment. Appl. Surf. Sci. 2016, 388, 483–490. [Google Scholar] [CrossRef]
- Rouillard, F.; Moine, G.; Martinelli, L.; Ruiz, J.C. Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation. Oxid. Met. 2012, 77, 27–55. [Google Scholar] [CrossRef]
- Furukawa, T.; Inagaki, Y.; Aritomi, M. Compatibility of FBR structural materials with supercritical carbon dioxide. Prog. Nucl. Energy 2011, 53, 1050–1055. [Google Scholar] [CrossRef]
- Ahmad, B.; Fox, P. STEM Analysis of the Transient Oxidation of a Ni-20Cr Alloy at High Temperature. Oxid. Met. 1999, 52, 113–138. [Google Scholar] [CrossRef]
- Li, B.; Gleeson, B. Effects of Silicon on the Oxidation Behavior of Ni-Base Chromia-Forming Alloys. Oxid. Met. 2006, 65, 101–122. [Google Scholar] [CrossRef]
- Bates, H.G.A. The Corrosion Behavior of High-Temperature Alloys During Exposure for Times up to 10,000 h in Prototype Nuclear Process Helium at 700 to 900 °C. Nucl. Technol. 1984, 66, 415–428. [Google Scholar] [CrossRef]
- Olivares, R.I.; Young, D.J.; Nguyen, T.D.; Marvig, P. Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures. Oxid. Met. 2018, 90, 1–25. [Google Scholar] [CrossRef]
- Niewolak, L.; Young, D.; Hattendorf, H.; Singheiser, L.; Quadakkers, W.J. Mechanisms of Oxide Scale Formation on Ferritic Interconnect Steel in Simulated Low and High pO2 Service Environments of Solid Oxide Fuel Cells. Oxid. Met. 2014, 82, 123–143. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Zhang, J.; Young, D.J. Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 gas at 818 °C. Corros. Sci. 2013, 76, 231–242. [Google Scholar] [CrossRef]
- Young, D.J.; Nguyen, T.D.; Felfer, P.; Zhang, J.; Cairney, J.M. Penetration of protective chromia scales by carbon. Scr. Mater. 2014, 77, 29–32. [Google Scholar] [CrossRef]
- Lee, H.J.; Subramanian, G.O.; Kim, S.H.; Jang, C. Effect of pressure on the corrosion and carburization behavior of chromia-forming heat-resistant alloys in high-temperature carbon dioxide environments. Corros. Sci. 2016, 111, 649–658. [Google Scholar] [CrossRef]
- Pint, B.A.; Keiser, J.R. Exploring Material Solutions for Supercritical CO2 Applications above 800 °C. Oxid. Met. 2022, 98, 545–559. [Google Scholar] [CrossRef]
- Pint, B.A.; Unocic, K.A. The Effect of CO2 Pressure on Chromia Scale Microstructure at 750 °C. Jom 2018, 70, 1511–1519. [Google Scholar] [CrossRef]
- Pint, B.; Brese, R.; Keiser, J. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 °C. Mater. Corros. 2017, 68, 151–158. [Google Scholar] [CrossRef]
- Pint, B.A.; Lehmusto, J.; Lance, M.J.; Keiser, J.R. Effect of pressure and impurities on oxidation in supercritical CO2. Mater. Corros. 2019, 70, 1400–1409. [Google Scholar] [CrossRef]
- Oleksak, R.P.; Tylczak, J.H.; Carney, C.S.; Holcomb, G.R.; Doğan, Ö.N. High-Temperature Oxidation of Commercial Alloys in Supercritical CO2 and Related Power Cycle Environments. Jom 2018, 70, 1527–1534. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Liu, X.; Khan, H.I.; Xu, H.; Zhang, N. The characterization of oxide scales formed on ferritic-martensitic steel in supercritical water with dissolved oxygen. Corros. Sci. 2020, 174, 108810. [Google Scholar] [CrossRef]
- Saunders, S.; Monteiro, M.; Rizzo, F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater. Sci. 2008, 53, 775–837. [Google Scholar] [CrossRef]
- Li, K.; Zeng, Y.; Luo, J.-L. Corrosion of SS310 and Alloy 740 in high temperature supercritical CO2 with impurities H2O and O2. Corros. Sci. 2021, 184, 109350. [Google Scholar] [CrossRef]
- Essuman, E.; Meier, G.; Żurek, J.; Hänsel, M.; Singheiser, L.; Quadakkers, W. Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor. Scr. Mater. 2007, 57, 845–848. [Google Scholar] [CrossRef]
- Young, D.J.; Pint, B. Chromium Volatilization Rates from Cr2O3 Scales into Flowing Gases Containing Water Vapor. Oxid. Met. 2006, 66, 137–153. [Google Scholar] [CrossRef]
- Pint, B.A.; Thomson, J.K. Effect of oxy-firing on corrosion rates at 600–650 °C. Mater. Corros. 2014, 65, 132–140. [Google Scholar] [CrossRef]
- Mahaffey, J.; Adam, D.; Brittan, A.; Anderson, M.; Sridharan, K. Corrosion of Alloy Haynes 230 in High Temperature Supercritical Carbon Dioxide with Oxygen Impurity Additions. Oxid. Met. 2016, 86, 567–580. [Google Scholar] [CrossRef]
- Lehmusto, J.; Kurley, J.M.; Lance, M.J.; Keiser, J.R.; Pint, B.A. The Impact of Impurities on Alloy Behavior in Supercritical CO2 at 700 °C. Oxid. Met. 2020, 94, 95–111. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, Q.; Gui, J.; Li, M.; Ni, Y.; Xu, H. Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water. Mater. High Temp. 2018, 35, 461–468. [Google Scholar] [CrossRef]
- Li, K.; Zeng, Y.; Luo, J.-L. Corrosion performance of candidate boiler tube alloys under advanced pressurized oxy-fuel combustion conditions. Energy 2021, 215, 119178. [Google Scholar] [CrossRef]
- Mahaffey, J.; Schroeder, A.; Adam, D.; Brittan, A.; Anderson, M.; Couet, A.; Sridharan, K. Effects of CO and O2 Impurities on Supercritical CO2 Corrosion of Alloy 625. Met. Mater. Trans. A 2018, 49, 3703–3714. [Google Scholar] [CrossRef]
- Oleksak, R.P.; Tylczak, J.H.; Holcomb, G.R.; Doğan, N. Temperature-Dependence of Corrosion of Ni-Based Superalloys in Hot CO2-Rich Gases Containing SO2 Impurities. Jom 2020, 72, 1822–1829. [Google Scholar] [CrossRef]
- Zhang, N.-Q.; Zhu, Z.-L.; Xu, H.; Mao, X.-P.; Li, J. Oxidation of ferritic and ferritic–martensitic steels in flowing and static supercritical water. Corros. Sci. 2016, 103, 124–131. [Google Scholar] [CrossRef]
- Liu, C.; Shen, T.; Yao, C.; Chang, H.; Wei, K.; Niu, L.; Ma, Z.; Wang, Z. Corrosion behavior of ferritic–martensitic steels SIMP and T91 in fast-flowing steam. Corros. Sci. 2021, 187, 109474. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Wang, J.; Tang, X. Effect of high flow velocity on corrosion behavior of Ni based and Ni-Fe based alloys in supercritical water oxidation environment. J. Supercrit. Fluids 2021, 170, 105126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Leng, X.; Zhao, L.; Bai, B.; Wang, X.; Chen, H. Review on the Corrosion Behaviour of Nickel-Based Alloys in Supercritical Carbon Dioxide under High Temperature and Pressure. Crystals 2023, 13, 725. https://doi.org/10.3390/cryst13050725
Kang Y, Leng X, Zhao L, Bai B, Wang X, Chen H. Review on the Corrosion Behaviour of Nickel-Based Alloys in Supercritical Carbon Dioxide under High Temperature and Pressure. Crystals. 2023; 13(5):725. https://doi.org/10.3390/cryst13050725
Chicago/Turabian StyleKang, Yiyao, Xuesong Leng, Lin Zhao, Bowen Bai, Xiaoya Wang, and Hongsheng Chen. 2023. "Review on the Corrosion Behaviour of Nickel-Based Alloys in Supercritical Carbon Dioxide under High Temperature and Pressure" Crystals 13, no. 5: 725. https://doi.org/10.3390/cryst13050725
APA StyleKang, Y., Leng, X., Zhao, L., Bai, B., Wang, X., & Chen, H. (2023). Review on the Corrosion Behaviour of Nickel-Based Alloys in Supercritical Carbon Dioxide under High Temperature and Pressure. Crystals, 13(5), 725. https://doi.org/10.3390/cryst13050725