Theoretical Basis for the Photoelastic Residual Stress Evaluation in Misaligned Cubic Crystals
Abstract
:1. Introduction
Notations
2. Misaligned Cubic Crystals
2.1. Crystallographic and Specimen Frames
2.2. Piezo-Optic Crystals
3. Stressed Cubic Crystals
Example
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DICEA | Dipartimento di Ingegneria Civile, Edile ed Architettura, |
Universitá Politecnica delle Marche, 60131 Ancona, Italy | |
SIMAU | Dipartimento di Scienze e Ingegneria dei Materiali e Urbanistica |
Universitá Politecnica delle Marche, 60131 Ancona, Italy | |
ICRYS | Interdipartimental Research Center for Global Analysis of Crystals |
Universitá Politecnica delle Marche, 60131 Ancona, Italy | |
INFN | Istituto Nazionale di Fisica Nucleare |
PANDA | Anti-Proton ANnhilation at Darmstadt Experiment |
XRD | X-ray diffraction. |
Appendix A
Appendix B
References
- Dall, J.W.; Riley, W.F. Experimental Stress Analysis; Mc Graw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Aben, H.; Guillemet, C. Photoelasticity of Glass; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Frocht, M.M. Photoelasticity: The Selected Scientific Papers of M.M. Frocht; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Ajovalasi, A.; Petrucci, G.; Scafidi, M. Review of RGB photoelasticity. Opt. Lasers Eng. 2015, 68, 58–73. [Google Scholar] [CrossRef]
- Ramesh, K. Digital Photoelasticity: Advanced Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Rastogi, P.K. Photomechanics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Montalto, L.; Natali, P.P.; Scalise, L.; Paone, N.; Daví, F.; Rinaldi, D.; Barucca, G.; Mengucci, P. Quality Control and Structural Assessment of Anisotropic Scintillating Crystals. Crystals 2019, 9, 376. [Google Scholar] [CrossRef]
- Korzhik, M.; Gektin, A. Engineering of Scintillation Materials and Radiation Technologies. In Proceedings of the ISMART 2016, Springer Proceedings in Physics, Minsk, Belarus, 26–30 September 2016; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Maddalena, F.; Tjahjana, L.; Xie, A.; Arramel; Zeng, S.; Wang, H.; Coquet, P.; Drozdowski, W.; Dujardin, C.; Dang, C.; et al. Inorganic, Organic, and Perovskite Halides with Nanotechnology for High-Light Yield X- and γ-ray Scintillators. Crystals 2019, 9, 88. [Google Scholar] [CrossRef]
- Fabjan, C.W.; Gianotti, F. Calorimetry for particle physics. Rev. Mod. Phys. 2003, 75, 1243. [Google Scholar] [CrossRef]
- Zhu, R.-Y. Precision crystal calorimeters in high-energy physics: Past, present, and future. In Proceedings of the Optical Engineering + Applications, San Diego, CA, USA, 10–14 August 2008; Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7079.toc?SSO=1 (accessed on 4 March 2023).
- Bornheim, A.; Apresya, A.; Duarte, J.; Pena, C.; Ronzhin, A.; Spiropulu, M.; Xie, S. Calorimeters for Precision Timing Measurements in High Energy Physics. In Proceedings of the 16th International Conference on Calorimetry in High Energy Physics (CALOR 2014) IOP Publishing. J. Phys. Conf. Ser. 2015, 587, 012057. [Google Scholar] [CrossRef]
- Donghia, R. The Mu2e experiment at Fermilab: Design and status. Il Nuovo Cim. 2017, 40, 176. [Google Scholar]
- The PANDA Collaboration; Barucca, G.; Davı, F.; Lancioni, G.; Mengucci, P.; Montalto, L.; Natali, P.P.; Paone, N.; Rinaldi, D.; Scalise, L.; et al. Precision resonance energy scans with the PANDA experiment at FAIR: Sensitivity study for width and line-shape measurements of the X(3872). Eur. Phys. J. A 2019, 55, 42. [Google Scholar] [CrossRef]
- Golutvin, A. Review of calorimeters. Nucl. Instrum. Methods Phys. Res. A 2000, 453, 192–198. [Google Scholar] [CrossRef]
- Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. A 2016, 809, 130. [Google Scholar] [CrossRef]
- Lecoq, P.; Annekov, A.; Getkin, A.; Korzhik, M.; Pedrini, C. Inorganic Scintillators for Detector Systems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006. [Google Scholar]
- Akkerman, Q.A.; Manna, L. What Defines a Halide Perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef]
- Dhanaraj, G.; Byrappa, K.; Prasad, V.; Dudley, M. (Eds.) Springer Handbook of Crystal Growth; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Montalto, L.; Paone, N.; Scalise, L.; Rinaldi, D. A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging. Rev. Sci. Instrum. 2015, 86, 063102. [Google Scholar] [CrossRef] [PubMed]
- Montalto, L.; Paone, N.; Rinaldi, D.; Scalise, L. Inspection of birefringent media by photoelasticity: From diffuse light polariscope to laser conoscopic technique. Opt. Eng. 2015, 54, 081210. [Google Scholar] [CrossRef]
- Natali, P.P.; Montalto, L.; Daví, F.; Paone, N.; Rinaldi, D.; Scalise, L. Optimization of the photoelastic fringe pattern processing for the stress evaluation in scintillating anisotropic media. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017. [Google Scholar]
- Natali, P.P.; Montalto, L.; Rinaldi, D.; Daví, F.; Paone, N.; Scalise, L. Non invasive Inspection of Anisotropic Crystals: Innovative Photoelasticity-Based Methods. IEEE Trans. Nucl. Sci. 2018, 65, 2203–2207. [Google Scholar] [CrossRef]
- Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Daví, F. Photoelastic sphenoscopic analysis of crystals. Rev. Sci. Instrum. 2016, 87, 015113. [Google Scholar] [CrossRef] [PubMed]
- Daví, F. On the Bertin Surfaces for Photoelastic Crystals. J. Opt. Soc. Am. A 2015, 32, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Wahlstrom, E.E. Optical Crystallography; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Rinaldi, D.; Daví, F.; Montalto, L. On the photoelastic constants and the Brewster law for stressed tetragonal crystals. Math. Methods Appl. Sci. 2018, 41, 3103–3116. [Google Scholar] [CrossRef]
- Daví, F.; Rinaldi, D.; Montalto, L. On the photoelastic constants for stressed anisotropic crystals. Nucl. Inst. Methods Phys. Res. A 2019, 947, 162782. [Google Scholar]
- Rinaldi, D.; Montalto, L.; Natali, P.P.; Daví, F. Elasto-optic properties and internal stress analysis for monoclinic and trigonal crystals. J. Instrum. 2021, 16, P08018. [Google Scholar] [CrossRef]
- Stadnyk, V.Y.; Matviiv, R.B.; Shchepanskyi, P.A.; Rudysh, M.Y.; Kogut, Z.A. Photoelastic Properties of Potassium Sulfate Crystals. Phys. Solid State 2019, 61, 2130–2133. [Google Scholar] [CrossRef]
- Mytsyk, B.; Stadnyk, V.; Demyanyshyn, N.; Kost, Y.; Shchepanskyi, P. Photoelasticity of ammonium sulfate crystals. Opt. Mater. 2019, 88, 723–728. [Google Scholar] [CrossRef]
- Mytsyk, B.; Andrushchak, A.; Vynnyk, D.; Demyanyshyn, N.; Kost, Y.; Kityk, A. Characterization of photoelastic materials by combined Mach-Zehnder and conoscopic interferometry: Application to tetragonal lithium tetraborate crystals. Opt. Lasers Eng. 2020, 127, 105991. [Google Scholar] [CrossRef]
- Rinaldi, D.; Natali, P.P.; Montalto, L.; Daví, F. The Refraction Indices and Brewster Law in Stressed Isotropic Materials and Cubic Crystals. Crystals 2021, 11, 1104. [Google Scholar] [CrossRef]
- Sirotin, Y.I.; Shaskolskaya, M.P. Fundamentals of Crystal Physics; Mir: Moscow, Russia, 1982. [Google Scholar]
- Perelomova, M.V.; Tagieva, M.M. Problems in Crystal Physics with Solutions; MIR Publishers: Moscow, Russia, 1983. [Google Scholar]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Balzar, D.; Von Dreele, R.B.; Bennet, K.; Ledbetter, H. Elastic-strain tensor by Rietveld refinement of diffraction measurements. J. Appl. Phys. 1998, 84, 4822–4833. [Google Scholar] [CrossRef]
- Popa, N.C.; Balzar, D. Elastic strain and stress determination by Rietveld refinement: Generalized treatment for textured polycrystals for all Laue classes. J. Appl. Crystallogr. 2001, 34, 187–195. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Salvati, E.; Lunt, A.G.J.; Sui, T.; Mughal, M.Z.; Daniel, R.; Keckes, J.; Bemporad, E.; Sebastiani, M. Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysis. Mater. Des. 2018, 145, 55–64. [Google Scholar] [CrossRef]
- Narasimhamurty, T.S. Photoelastic and Electro-Optic Properties of Crystals; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Authier, A. (Ed.) International Tables for Crystallography. Volume D: Physical Properties of Crystals; Kluwer Academic Publishers: Dordrecht, The Netherlnads, 2003. [Google Scholar]
- Daví, F.; Rinaldi, D. Mechanical and optical properties of anisotropic single-crystal prisms. J. Elast. 2015, 120, 197–224. [Google Scholar] [CrossRef]
- Rodrigues, O. Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendants des causes qui peuvent les produire. J. Math. Pures Appl. 1840, 5, 380–440. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davì, F.; Rinaldi, D.; Montalto, L. Theoretical Basis for the Photoelastic Residual Stress Evaluation in Misaligned Cubic Crystals. Crystals 2023, 13, 759. https://doi.org/10.3390/cryst13050759
Davì F, Rinaldi D, Montalto L. Theoretical Basis for the Photoelastic Residual Stress Evaluation in Misaligned Cubic Crystals. Crystals. 2023; 13(5):759. https://doi.org/10.3390/cryst13050759
Chicago/Turabian StyleDavì, Fabrizio, Daniele Rinaldi, and Luigi Montalto. 2023. "Theoretical Basis for the Photoelastic Residual Stress Evaluation in Misaligned Cubic Crystals" Crystals 13, no. 5: 759. https://doi.org/10.3390/cryst13050759
APA StyleDavì, F., Rinaldi, D., & Montalto, L. (2023). Theoretical Basis for the Photoelastic Residual Stress Evaluation in Misaligned Cubic Crystals. Crystals, 13(5), 759. https://doi.org/10.3390/cryst13050759