Green Synthesis of Nanomagnetic Copper and Cobalt Ferrites Using Corchorus Olitorius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method
2.3. Characterization Systems
3. Results
3.1. TG/DTG Analysis
3.2. XRD Analysis
3.3. FTIR Analysis
3.4. Morphological Studies
3.5. Surface Properties
3.6. Magnetic Behavior Study
4. Discussion
5. Conclusions
- The preparation method used is important because it is economical in terms of its reliance on an available natural product. A glowing self-combustion resulted in the nucleation and crystallization of copper and cobalt ferrite particles.
- The heat treatment at 700 °C led to enhancing the crystallinity of Co and Cu ferrites nanoparticles with different modifications to the most structural properties of these ferrites. The thermal analysis confirms formation of chemically stable Co and Cu ferrites.
- The as-prepared Cu and Co ferrites have spinel-type structure with two characteristic vibration bands around 400 cm−1 and 600 cm−1.
- The calcination at 700 °C resulted in a drop in the values of SBET and Vm for Co ferrite with an increase in these values of Cu ferrite and change in the material’s pore structure.
- The magnetisms of CuFe2O4 and CoFe2O4 are 15.77 emu/g and 19.14 emu/g, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, Z.; Deng, Z.; Zhang, L.; Chen, J.; Wang, G.; Wu, Z. The structure of copper ferrite prepared by five methods and its catalytic activity on lignin oxidative degradation. Mater. Res. Express 2020, 7, 035007. [Google Scholar]
- Wang, L.; Bock, D.C.; Li, J.; Stach, E.A.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Synthesis and Characterization of CuFe2O4 Nano/sub-micron Wires-Carbon Nanotube Composites as Binder-free Anodes for Li-ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 8770–8785. [Google Scholar] [CrossRef] [PubMed]
- Tamboli, Q.Y.; Patange, S.M.; Mohanta, Y.K.; Sharma, R.; Zakde, K.R. Synthesis of Cobalt Ferrite Nanoparticles: An Emerging Material for Environmental and Biomedical Applications. J. Nanomater. 2023, 2023, 9770212. [Google Scholar] [CrossRef]
- Lassoued, A.; Ben Hassine, M.; Karolak, F.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis and magnetic characterization of Spinel ferrites MFe2O4 (M = Ni, Co, Zn and Cu) via chemical co-precipitation method. J. Mater. Sci. Mater. Electron. 2017, 28, 18857–18864. [Google Scholar] [CrossRef]
- Xian, G.; Kong, S.; Li, Q.; Zhang, G.; Zhou, N.; Du, H.; Niu, L. Synthesis of Spinel Ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for Persulfate Activation to Remove Aqueous Organics: Effects of M-Site Metal and Synthetic Method. Front. Chem. 2020, 8, 177. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Fawzan, F.F.; Almufarij, R.S.; Abd-Elkader, O.H.; Deraz, N.M. Magnetic Behavior of Virgin and Lithiated NiFe2O4 Nanoparticles. Crystals 2023, 13, 69. [Google Scholar] [CrossRef]
- Deraz, N.M. Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles. J. Alloy. Compd. 2010, 501, 317–325. [Google Scholar] [CrossRef]
- Deraz, N.M. Glycine-assisted fabrication of nanocrystalline cobalt ferrite system. J. Anal. Appl. Pyrolysis 2010, 88, 103–109. [Google Scholar] [CrossRef]
- Chagas, E.F.; Ponce, A.S.; Prado, R.J.; Silva, G.M.; Bettini, J. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite. J. Appl. Phys. 2014, 116, 033901. [Google Scholar] [CrossRef]
- Galizia, P.; Cernea, M.; Mihalache, V.; Diamandescu, L.; Maizza, G.; Galassi, C. Easy batch-scale production of cobalt ferrite nanopowders by two-step milling: Structural and magnetic characterization. Mater. Des. 2017, 130, 327–335. [Google Scholar] [CrossRef]
- Tomiczek, A.E. Effect of milling time on microstructure of cobalt ferrites synthesized by mechanical alloying. Arch. Mater. Sci. Eng. 2021, 111, 1. [Google Scholar] [CrossRef]
- Shemer, G.; Tirosh, E.; Livneh, T.; Markovich, G. Tuning a colloidal synthesis to control CO2+ doping in ferrite nanocrystals. J. Phys. Chem. C 2007, 111, 14334–14338. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, N.D.; Choudhary, N.; Verma, M.K.; Singh, D. Chromium incorporated nanocrystalline cobalt ferrite synthesized by combustion method: Effect of fuel and temperature. Ceram. Int. 2017, 43, 13401–13410. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Humbe, A.V.; Kumar, A.; Dorik, R.G.; Jadhav, K.M. Urea assisted synthesis of Ni1-XZnxFe2O4(0 ≤ x ≤ 0.8): Magnetic and Mössbauer investigations. J. Alloy. Compd. 2017, 704, 227–236. [Google Scholar] [CrossRef]
- Ali, M.B.; El Maalam, K.; El Moussaoui, H.; Mounkachi, O.; Hamedoun, M.; Masrour, R.; Hlil, E.K.; Benyoussef, A. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater. 2016, 398, 20–25. [Google Scholar]
- Deraz, N.M. Facile and eco-friendly route for green synthesis of magnesium ferrite nano particles. Sci. Sinter. 2020, 52, 53–65. [Google Scholar] [CrossRef]
- Gul, S.; Khan, S.B.; Rehman, I.U.; Khan, M.A.; Khan, M.I. A comprehensive review of magnetic nanomaterials modern day theranostics. Front. Mater. 2019, 6, 179. [Google Scholar] [CrossRef]
- Deraz, N.M. Incandescent Combustion Synthesis of Nanomagnetic Ni/NiO Composites. Sci. Sinter. 2021, 53, 155–167. [Google Scholar] [CrossRef]
- Franco, A.; Machado, F.L.A.; Zapf, V.S. Magnetic properties of nanoparticles of cobalt ferrite at high magnetic field. J. Appl. Phys. 2011, 110, 053913. [Google Scholar] [CrossRef]
- Ghaani, M.; Saffari, J. Synthesis of CuFe2O4 Nanoparticles by a new co-precipitation method and using them as Efficient Catalyst for One-pot Synthesis of Naphthoxazinones. J. Nanostruct. 2016, 6, 172–178. [Google Scholar]
- Song, Q.; Zhang, Z.J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 2012, 134, 10182–10190. [Google Scholar] [CrossRef]
- Gurgel, A.L.; Martinelli, A.E.; de Aquino Conceição, O.L.; Xavier, M.M., Jr.; Torres, M.A.M.; de Araújo Melo, D.M. Microwave-assisted hydrothermal synthesis and magnetic properties of nanostructured cobalt ferrite. J. Alloy. Compd. 2019, 799, 36–42. [Google Scholar] [CrossRef]
- Kumar, V.; Rana, A.; Yadav, M.S.; Pant, R.P. Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 2008, 302, 1729–1734. [Google Scholar] [CrossRef]
- Mahdikhah, V.; Ataie, A.; Babaei, A.; Sheibani, S.; Ow-Yang, C.W.; Abkenar, S.K. Control of structural and magnetic characteristics of cobalt ferrite by post-calcination mechanical milling. J. Phys. Chem. Solids 2019, 134, 286–294. [Google Scholar]
- Liu, B.L.; Fu, Y.P.; Wang, M.L. Magnetic and catalytic properties of copper ferrite nanopowders prepared by combustion process. J. Nanosci. Nanotechnol. 2009, 9, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, M.V.; Morozov, Y.G.; Belousova, O.V. Synthesis of Copper Ferrite Nanoparticles. Inorg. Mater. 2013, 49, 606–615. [Google Scholar] [CrossRef]
- Ayesh, A.I.; Abu Haija, M.; Shaheen, A.; Banat, F. Spinel ferrite nanoparticles for H2S gas sensor. Appl. Phys. A 2017, 123, 682. [Google Scholar] [CrossRef]
- Alves, T.E.P.; Pessoni, H.V.S.; Franco, A., Jr. The effect of Y 3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 16395–16405. [Google Scholar] [CrossRef]
- Abdellatif, M.H.; Innocenti, C.; Liakos, I.; Scarpellini, A.; Marras, S.; Salerno, M. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite. J. Magn. Magn. Mater. 2017, 424, 402–409. [Google Scholar]
- Haija, M.A.; Abu-Hani, A.F.; Hamdan, N.; Stephen, S.; Ayesh, A.I. Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloy. Compd. 2017, 690, 461–468. [Google Scholar] [CrossRef]
- Zhuravlev, V.A.; Minin, R.V.; Itin, V.I.; Lilenko, I.Y. Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion. J. Alloy. Compd. 2017, 692, 705–712. [Google Scholar] [CrossRef]
- Le Trong, H.; Presmanes, L.; De Grave, E.; Barnabé, A.; Bonningue, C.; Tailhades, P. Mössbauer characterisations and magnetic properties of iron cobaltites CoxFe3− xO4 (1≤ x ≤ 2.46) before and after spinodal decomposition. J. Magn. Magn. Mater. 2013, 334, 66–73. [Google Scholar] [CrossRef]
- Sawatzky, G.A.; Van Der Woude, F.; Morrish, A.H. Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 1968, 39, 1204–1205. [Google Scholar] [CrossRef]
- Blanco-Gutiérrez, V.; Gallastegui, J.A.; Bonville, P.; Torralvo-Fernandez, M.J.; Sáez-Puche, R. MFe2O4 (M: Co2+, Ni2+) Nanoparticles: Mossbauer and X-ray Absorption Spectroscopies Studies and High-Temperature Superparamagnetic Behavior. J. Phys. Chem. C 2012, 116, 24331–24339. [Google Scholar] [CrossRef]
- Peddis, D.; Yaacoub, N.; Ferretti, M.; Martinelli, A.; Piccaluga, G.; Musinu, A.N.N.A.; Cannas, C.; Navarra, G.; Greneche, J.M.; Fiorani, D. Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter 2011, 23, 426004. [Google Scholar] [CrossRef]
- Mameli, V.; Musinu, A.; Ardu, A.; Ennas, G.; Peddis, D.; Niznansky, D.; Sangregorio, C.; Innocenti, C.; Thanh, N.T.; Cannas, C. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 2016, 8, 10124–10137. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elkader, O.H.; Al-Enizi, A.M.; Shaikh, S.F.; Ubaidullah, M.; Abdelkader, M.O.; Mostafa, N.Y. Enhancing the Liquefied Petroleum Gas Sensing Sensitivity of Mn-Ferrite with VanadiumDoping. Processes 2022, 10, 2012. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared spectra of ferrites. Phys. Rev. 1955, 99, 1727–1735. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Fawzan, F.F.; Almufarij, R.S.; Abd-Elkader, O.H.; Deraz, N.M. Biosynthesis, Physicochemical and Magnetic Properties of Inverse Spinel Nickel Ferrite System. Crystals 2022, 12, 1542. [Google Scholar] [CrossRef]
- Al-Enizi, A.M.; Abd-Elkader, O.H.; Shaikh, S.F.; Ubaidullah, M.; Abdelkader, M.O.; Mostafa, N.Y. Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications. Coatings 2022, 12, 1355. [Google Scholar] [CrossRef]
- Abd-Elkader, O.; Al-Enizi, A.M.; Shaikh, S.F.; Ubaidullah, M.; Abdelkader, M.O.; Mostafa, N.Y. The Structure, Magnetic, and Gas Sensing Characteristics of W-Substituted Co-Ferrite Nanoparticles. Crystals 2022, 12, 393. [Google Scholar] [CrossRef]
- Gu, Z.; Xiang, X.; Fan, G.; Li, F. Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction− oxidation route. J. Phys. Chem. C 2008, 112, 18459–18466. [Google Scholar] [CrossRef]
- Ammar, S.; Jouini, N.; Fiévet, F.; Beji, Z.; Smiri, L.; Moliné, P.; Danot, M.; Grenèche, J.M. Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. J. Phys. Condens. Matter 2006, 18, 9055. [Google Scholar] [CrossRef]
- Kodama, R.H.; Berkowitz, A.E.; McNiff, E.J., Jr.; Foner, S. Surface spin disorder in ferrite nanoparticles. J. Appl. Phys. 1997, 81, 5552–5557. [Google Scholar] [CrossRef]
- Sharifi, A.; Hayati, R.; Setoudeh, N.; Rezaei, G. A comparison between structural and magnetic behavior of cobalt ferrite synthesized via solid state and chemical methods. Mater. Res. Express 2021, 8, 106103. [Google Scholar] [CrossRef]
- Limaye, M.V.; Singh, S.B.; Date, S.K.; Kothari, D.; Reddy, V.R.; Gupta, A.; Sathe, V.; Choudhary, R.J.; Kulkarni, S.K. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J. Phys. Chem. B 2009, 113, 9070–9076. [Google Scholar] [CrossRef] [PubMed]
- Houshiar, M.; Zebhi, F.; Razi, Z.J.; Alidoust, A.; Askari, Z. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 2014, 371, 43–48. [Google Scholar] [CrossRef]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloy. Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Hien, N.T.; Truong, N.X.; Oanh, V.T.K.; Hai, P.V.; Ca, N.X.; Van, H.T.; Vuong, N.V. Preparation of exchange coupled CoFe2O4/CoFe2 nanopowders. J. Magn. Magn. Mater. 2020, 511, 166984. [Google Scholar] [CrossRef]
- Salunkhe, A.B.; Khot, V.M.; Phadatare, M.R.; Pawar, S.H. Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio. J. Alloy. Compd. 2012, 514, 91–96. [Google Scholar] [CrossRef]
- Abd-Elkader, H.O.; Deraz, N.M. Synthesis and Characterization of New Copper based Nanocomposite. Int. J. Electrochem. Sci. 2013, 8, 8614–8622. [Google Scholar]
- Deng, H.; Chen, H.; Li, H. Synthesis of crystal MFe2O4 (M = Mg, Cu, Ni) microspheres. Mater. Chem. Phys. 2007, 101, 509–551. [Google Scholar] [CrossRef]
- Farghali, A.A.; Khedr, M.H.; Khalek, A.A.A. Catalytic decomposition of carbondioxide over freshly reduced activated CuFe2O4 nano-crystals. J. Mater. Process. Technol. 2007, 181, 81–87. [Google Scholar] [CrossRef]
h | k | l | S1 (CuFe2O4) | S3 (CuFe2O4 Δ700) | S2 (CoFe2O4) | S4 (CoFe2O4 Δ700) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2θ Calc. | 2θ Obs. | Diff. | 2θ Obs. | Diff. | 2θ Calc. | 2θ Obs. | Diff. | 2θ Obs. | Diff. | |||
1 | 1 | 1 | 18.39 | 18.3735 | 0.0165 | 18.3678 | 0.0222 | 18.39 | 18.4051 | −0.0151 | 18.3924 | −0.0624 |
0 | 2 | 2 | 30.28 | 30.2247 | 0.0553 | 30.215 | 0.065 | 30.28 | 30.2774 | 0.0026 | 30.2562 | 0.3938 |
3 | 1 | 1 | 35.45 | 35.6020 | −0.1520 | 35.5906 | 0.2894 | 35.45 | 35.6648 | −0.2148 | 35.6395 | −0.0495 |
2 | 2 | 2 | 37.30 | 37.2419 | 0.0581 | 37.2299 | 0.0701 | 37.37 | 37.3077 | 0.0623 | 37.2812 | 0.0888 |
0 | 0 | 4 | 43.32 | 43.2713 | 0.0487 | 43.2571 | 0.0629 | 43.32 | 43.3488 | −0.0288 | 43.3176 | 0.0024 |
3 | 1 | 3 | 47.54 | 47.3796 | 0.1604 | 47.3639 | 0.1161 | 47.54 | 47.4653 | 0.0747 | 47.4308 | 0.1092 |
4 | 2 | 2 | 53.88 | 53.6885 | 0.1915 | 53.6705 | 0.0195 | 53.88 | 53.7874 | 0.0926 | 53.7476 | 0.3424 |
3 | 3 | 3 | 57.08 | 57.2349 | −0.1549 | 57.2154 | −0.1354 | 57.40 | 57.3415 | 0.0585 | 57.2985 | 0.1015 |
0 | 4 | 4 | 63.03 | 62.8557 | 0.1743 | 62.8339 | 0.0361 | 63.03 | 62.9751 | 0.0549 | 62.927 | −0.457 |
5 | 1 | 3 | 66.17 | 66.0929 | 0.0771 | 66.0697 | −0.0297 | 66.17 | 66.2200 | −0.0500 | 66.1688 | −0.1988 |
2 | 4 | 4 | 67.04 | 67.1536 | −0.1136 | 67.1300 | −0.0900 | 67.38 | 67.2833 | 0.0967 | 67.2311 | 0.1489 |
2 | 0 | 6 | 71.35 | 71.3195 | 0.0305 | 71.2939 | 0.0561 | 71.35 | 71.4597 | −0.1097 | 71.4032 | −0.0532 |
5 | 3 | 3 | 74.26 | 74.3766 | −0.1166 | 74.3496 | −0.0896 | 74.42 | 74.5249 | −0.1049 | 74.4651 | −0.0451 |
2 | 2 | 6 | 75.27 | 75.3852 | −0.1152 | 75.3576 | −0.0876 | 75.64 | 75.5362 | 0.1038 | 75.4753 | −0.0053 |
4 | 4 | 4 | 79.81 | 79.3768 | 0.4332 | 79.3472 | 0.0528 | - | - | - | - | - |
Parameters | S1 | S2 | S3 | S4 |
---|---|---|---|---|
a, nm | 0.83497 | 0.83552 | 0.83639 | 0.83661 |
α | 90.00 | 90.00 | 90.00 | 90.00 |
β | 90.00 | 90.00 | 90.00 | 90.00 |
γ | 90.00 | 90.00 | 90.00 | 90.00 |
Volume (V), nm3 | 0.58212 | 0.58330 | 0.58510 | 0.58560 |
Crystallite Size (d), nm | 18.840 | 54.110 | 17.902 | 60.317 |
Dx, g/cm3 | 5.4577 | 5.3418 | 5.4299 | 5.3208 |
LA, nm | 0.3615 | 0.3618 | 0.3622 | 0.3623 |
LB, nm | 0.2950 | 0.2953 | 0.2956 | 0.2957 |
A-O, nm | 0.1909 | 0.1910 | 0.1912 | 0.1913 |
B-O, nm | 0.2154 | 0.2157 | 0.2158 | 0.2159 |
rA, nm | 0.0589 | 0.0590 | 0.0592 | 0.0593 |
rB, nm | 0.0834 | 0.0837 | 0.0838 | 0.0839 |
δ, Lines/nm | 2.82 × 10−3 | 3.42 × 10−4 | 3.12 × 10−3 | 2.75 × 10−4 |
ε | 1.84 × 10−3 | 6.41 × 10−4 | 1.94 × 10−3 | 1.81 × 10−4 |
Samples | SBET (m2/g) | Vm (cc/g) | Vp (cc/g) | ȓ (nm) | BET-C (Constant) |
---|---|---|---|---|---|
S1 | 18 | 4.136 | 0.0665 | 14.78 | 31.38 |
S2 | 55 | 12.67 | 0.1319 | 9.57 | 10.85 |
S3 | 31.21 | 7.17 | 0.0523 | 6.704 | 3.54 |
S4 | 47.19 | 10.84 | 0.1903 | 16.134 | 5.21 |
Samples | Ms (emu/g) | Mr (emu/g) | Mr/Ms (emu/g) | Hc (G) | μm | Ka (erg/cm3) |
---|---|---|---|---|---|---|
S3 | 15.77 | 2.44 | 0.1547 | 154.03 | 0.6755 | 2479 |
S4 | 19.14 | 5.11 | 0.263 | 716.15 | 0.8047 | 13987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kadhi, N.S.; Al-Senani, G.M.; Almufarij, R.S.; Abd-Elkader, O.H.; Deraz, N.M. Green Synthesis of Nanomagnetic Copper and Cobalt Ferrites Using Corchorus Olitorius. Crystals 2023, 13, 758. https://doi.org/10.3390/cryst13050758
Al-Kadhi NS, Al-Senani GM, Almufarij RS, Abd-Elkader OH, Deraz NM. Green Synthesis of Nanomagnetic Copper and Cobalt Ferrites Using Corchorus Olitorius. Crystals. 2023; 13(5):758. https://doi.org/10.3390/cryst13050758
Chicago/Turabian StyleAl-Kadhi, Nada S., Ghadah M. Al-Senani, Rasmiah S. Almufarij, Omar H. Abd-Elkader, and Nasrallah M. Deraz. 2023. "Green Synthesis of Nanomagnetic Copper and Cobalt Ferrites Using Corchorus Olitorius" Crystals 13, no. 5: 758. https://doi.org/10.3390/cryst13050758
APA StyleAl-Kadhi, N. S., Al-Senani, G. M., Almufarij, R. S., Abd-Elkader, O. H., & Deraz, N. M. (2023). Green Synthesis of Nanomagnetic Copper and Cobalt Ferrites Using Corchorus Olitorius. Crystals, 13(5), 758. https://doi.org/10.3390/cryst13050758