Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots
Abstract
:1. Introduction
2. Computational Model
3. Results and Discussion
3.1. Structure Stability
3.2. Magnetic Properties
3.3. Electronic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wang, X.; Sun, G.; Li, N.; Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 2016, 45, 2239–2262. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, H.; Zhang, Q.F. Properties and applications of quantum dots derived from two-dimensional materials. Adv. Phys. X 2022, 7, 2048966. [Google Scholar] [CrossRef]
- Ramalingam, G.; Kathirgamanathan, P.; Ravi, G.; Elangovan, T.; Kumar, B.A.; Manivannan, N.; Kasinathan, K. Quantum Confinement Effect of 2D Nanomaterials. In Quantum Dots–Fundamental and Applications; IntechOpen: London, UK, 2020; pp. 1–12. [Google Scholar] [CrossRef]
- Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Dong, H.; Pu, S.; Zhang, X. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Res. 2018, 11, 4074–4081. [Google Scholar] [CrossRef]
- Biswas, M.C.; Islam, T.; Nandy, P.K.; Hossain, M. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Mater. Lett. 2021, 3, 889–911. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, X.; Shin, H.-J.; Park, S.; Huang, Y.; Duan, X. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53. [Google Scholar] [CrossRef]
- Han, S.-T.; Hu, L.; Wang, X.; Zhou, Y.; Zeng, Y.-J.; Ruan, S.; Pan, C.; Peng, Z. Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. Adv. Sci. 2017, 4, 1600435. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.-T. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem. Rev. 2020, 120, 3941–4006. [Google Scholar] [CrossRef]
- Palacios-Berraquero, C. Atomically-thin quantum light emitting diodes. In Quantum Confined Excitons in 2-Dimensional Materials; Springer: Cham, Switzerland, 2018; pp. 71–89. [Google Scholar]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Atta, M.M.; Osman, W.; Zhang, Q. Two-dimensional quantum dots for highly efficient heterojunction solar cells. J. Colloid Interface Sci. 2021, 603, 48–57. [Google Scholar] [CrossRef]
- Najafi, L.; Taheri, B.; Martín-García, B.; Bellani, S.; Di Girolamo, D.; Agresti, A.; Oropesa-Nuñez, R.; Pescetelli, S.; Vesce, L.; Calabrò, E.; et al. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano 2018, 12, 10736–10754. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, M.; Janfaza, S.; Tahmooressi, H.; Ravishankara, A.; Earl, E.; Tasnim, N.; Hoorfar, M. Enhanced selectivity of microfluidic gas sensors by modifying microchannel geometry and surface chemistry with graphene quantum dots. Sens. Actuators B Chem. 2021, 342, 130050. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Saroka, V.A.; Atta, M.M.; Abd-Elkader, O.H.; Zaghloul, N.S.; Zhang, Q. Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals 2022, 12, 1684. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zheng, W. Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis. Nano-Micro Lett. 2022, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.; Saad, M.A.; Ibrahim, M.A.; Yahia, I.S.; Abdelsalam, H.; Zhang, Q. Electronic, optical, and catalytic properties of finite antimonene nanoribbons: First principles study. Phys. Scr. 2022, 97, 035802. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Younis, W.O.; Saroka, V.A.; Teleb, N.H.; Yunoki, S.; Zhang, Q. Interaction of hydrated metals with chemically modified hexagonal boron nitride quantum dots: Wastewater treatment and water splitting. Phys. Chem. Chem. Phys. 2020, 22, 2566–2579. [Google Scholar] [CrossRef]
- Sivaranjani, P.; Janani, B.; Thomas, A.M.; Raju, L.L.; Khan, S.S. Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds. J. Clean. Prod. 2022, 352, 131506. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications. Nanomaterials 2022, 12, 1200. [Google Scholar] [CrossRef]
- Niu, Y.; Li, J.; Gao, J.; Ouyang, X.; Cai, L.; Xu, Q. Two-dimensional quantum dots for biological applications. Nano Res. 2021, 14, 3820–3839. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; Kc, S.; Dubey, M.; et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Bahauddin, S.M.; Robatjazi, H.; Thomann, I. Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2. ACS Photonics 2016, 3, 853–862. [Google Scholar] [CrossRef]
- Bastonero, L.; Cicero, G.; Palummo, M.; Fiorentin, M.R. Boosted Solar Light Absorbance in PdS2/PtS2 Vertical Heterostructures for Ultrathin Photovoltaic Devices. ACS Appl. Mater. Interfaces 2021, 13, 43615–43621. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Cheng, Y.C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402. [Google Scholar] [CrossRef]
- Wakamura, T.; Reale, F.; Palczynski, P.; Zhao, M.Q.; Johnson, A.T.C.; Guéron, S.; Mattevi, C.; Ouerghi, A.; Bouchiat, H. Spin-orbit interaction induced in graphene by transition metal dichalcogenides. Phys. Rev. B 2019, 99, 245402. [Google Scholar] [CrossRef]
- Husain, S.; Gupta, R.; Kumar, A.; Kumar, P.; Behera, N.; Brucas, R.; Chaudhary, S.; Svedlindh, P. Emergence of spin–orbit torques in 2D transition metal dichalcogenides: A status update. Appl. Phys. Rev. 2020, 7, 041312. [Google Scholar] [CrossRef]
- Osman, W.; Abdelsalam, H.; Ali, M.; Teleb, N.; Yahia, I.; Ibrahim, M.; Zhang, Q. Electronic and magnetic properties of graphene quantum dots doped with alkali metals. J. Mater. Res. Technol. 2021, 11, 1517–1533. [Google Scholar] [CrossRef]
- Su, J.; Telychko, M.; Hu, P.; Macam, G.; Mutombo, P.; Zhang, H.; Bao, Y.; Cheng, F.; Huang, Z.-Q.; Qiu, Z.; et al. Atomically precise bottom-up synthesis of π-extended [5] triangulene. Sci. Adv. 2019, 5, eaav7717. [Google Scholar] [CrossRef]
- Mishra, S.; Beyer, D.; Eimre, K.; Liu, J.; Berger, R.; Groening, O.; Pignedoli, C.A.; Müllen, K.; Fasel, R.; Feng, X.; et al. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019, 141, 10621–10625. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Yunoki, S.; Zhang, Q. Boosted spintronic properties in triangular Si-based nanoflakes. Phys. E Low-Dimens. Syst. Nanostructures 2021, 130, 114699. [Google Scholar] [CrossRef]
- Cheng, S.; Xue, Z.; Li, C.; Liu, Y.; Xiang, L.; Ke, Y.; Yan, K.; Wang, S.; Yu, P. On-surface synthesis of triangulene trimers via dehydration reaction. Nat. Commun. 2022, 13, 1705. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Atta, M.M.; Saroka, V.A.; Zhang, Q. Anomalous magnetic and transport properties of laterally connected graphene quantum dots. J. Mater. Sci. 2022, 57, 14356–14370. [Google Scholar] [CrossRef]
- Mishra, S.; Catarina, G.; Wu, F.; Ortiz, R.; Jacob, D.; Eimre, K.; Ma, J.; Pignedoli, C.A.; Feng, X.; Ruffieux, P.; et al. Observation of fractional edge excitations in nanographene spin chains. Nature 2021, 598, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Haldane, F.D.M. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State. Phys. Rev. Lett. 1983, 50, 1153–1156. [Google Scholar] [CrossRef]
- Affleck, I. Quantum spin chains and the Haldane gap. J. Phys. Condens. Matter 1989, 1, 3047–3072. [Google Scholar] [CrossRef]
- Bertel, R.; Mora-Ramos, M.; Correa, J. Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach. Phys. E Low-Dimens. Syst. Nanostructures 2019, 109, 201–208. [Google Scholar] [CrossRef]
- Tiutiunnyk, A.; Morales, A.L.; Bertel, R.; Restrepo, R.L.; Nava-Maldonado, F.M.; Martínez-Orozco, J.C.; Laroze, D.; Duque, C.A.; Correa, J.D.; Mora-Ramos, M.E. Electronic, Optical, and Magnetic Properties of Doped Triangular MoS2 Quantum Dots: A Density Functional Theory Approach. Phys. Status Solidi 2022, 259, 2100509. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Elkodous, M.A.; El-Khawaga, A.M.; Maksoud, M.I.A.A.; El-Sayyad, G.S.; Alias, N.; Abdelsalam, H.; Ibrahim, M.A.; Elsayed, M.A.; Kawamura, G.; Lockman, Z.; et al. Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: Theoretical and experimental study. Nanoscale 2022, 14, 8306–8317. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Teleb, N.; Wang, B.; Yunoki, S.; Zhang, Q. The electronic, adsorption, and catalytic properties of Bi-, Sb-, and As-nanoclusters. Catal. Today 2021, 376, 126–133. [Google Scholar] [CrossRef]
- Wang, S.; Han, C.; Ye, L.; Zhang, G.; Hu, Y.; Li, W.; Jiang, Y. Electronic Properties of Triangle Molybdenum Disulfide (MoS2) Clusters with Different Sizes and Edges. Molecules 2021, 26, 1157. [Google Scholar] [CrossRef] [PubMed]
- Gyorffy, B.L.; Pindor, A.J.; Staunton, J.; Stocks, G.M.; Winter, H.P. A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F Met. Phys. 1985, 15, 1337–1386. [Google Scholar] [CrossRef]
- Wasilewski, B.; Marciniak, W.; Werwiński, M. Curie temperature study of Y(Fe1−xCox)2 and Zr(Fe1−xCox)2 systems using mean field theory and Monte Carlo method. J. Phys. D Appl. Phys. 2018, 51, 175001. [Google Scholar] [CrossRef]
- Atkins, P.; Friedman, R. Molecular Quantum Mechanics; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996, 104, 5497–5509. [Google Scholar] [CrossRef]
- Bencini, A.; Totti, F. DFT description of the magnetic structure of polynuclear transition-metal clusters: The complexes [{Cu(bpca)2(H2O)2}{Cu(NO3)2}2], (bpca = Bis(2-pyridylcarbonyl)amine), and [Cu(DBSQ)(C2H5O)]2, (DBSQ = 3,5-di-tert-butyl-semiquinonato). Int. J. Quantum Chem. 2004, 101, 819–825. [Google Scholar] [CrossRef]
- Bencini, A.; Totti, F. A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters. J. Chem. Theory Comput. 2009, 5, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.X.; Wang, H.Y.; Xu, J.; Zhang, J.P. Theoretical studies on magnetic properties of a binuclear paddle wheel Cu(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3)2. Russ. J. Phys. Chem. A 2017, 91, 1070–1075. [Google Scholar] [CrossRef]
- Gusakova, J.; Wang, X.; Shiau, L.L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.; Tay, B.K. Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study within DFT Framework (GVJ-2e Method). Phys. Status Solidi (a) 2017, 214, 1700218. [Google Scholar] [CrossRef]
Struct. | Eb | MS | S | ΔE(eV) | TC(K) | 𝜒m(a.u) | Eg(eV) |
---|---|---|---|---|---|---|---|
T-WS2 | 5.57 | Sept | 3 | 0.25 | 645 | 57.64 | Egα = 3.39, Egβ = 3.39 |
T-WS2-S | 5.59 | Trp | 1 | 0.29 | 748 | 53.67 | Egα = 3.47, Egβ = 2.65 |
T-WS2-2H | 5.14 | Opn | 0 | 1.26 | 3294 | −22.37 | Egα = 2.53, Egβ = 2.53 |
T-WS2_w | 5.78 | Sept | 3 | 1.36 | 1169 | 160.12 | Egα = 2.57, Egβ = 2.83 |
T-WS2_w-S | 5.78 | cls | 0 | --- | --- | −16.40 | Eg = 3.19 |
T-MoS2 | 5.56 | Nont | 4 | 0.021 | 54 | 67.27 | Egα = 2.47, Egβ = 3.39 |
T-MoS2-S | 5.54 | Trp | 1 | 1.03 | 2656 | 17.42 | Egα = 3.46, Egβ = 2.93 |
T-MoS2-2H | 5.06 | cls | 0 | --- | --- | 66.59 | Eg = 2.78 |
T-MoS2_Mo | 5.91 | Nont | 4 | 1.81 | 1556 | 645.80 | Egα = 3.22, Egβ = 3.53 |
T-MoS2_Mo-S | 5.75 | Trp | 1 | 0.29 | 748 | 137.69 | Egα = 3.14, Egβ = 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, H.; Abd-Elkader, O.H.; Zaghloul, N.S.; Zhang, Q. Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots. Crystals 2023, 13, 251. https://doi.org/10.3390/cryst13020251
Abdelsalam H, Abd-Elkader OH, Zaghloul NS, Zhang Q. Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots. Crystals. 2023; 13(2):251. https://doi.org/10.3390/cryst13020251
Chicago/Turabian StyleAbdelsalam, Hazem, Omar H. Abd-Elkader, Nouf S. Zaghloul, and Qinfang Zhang. 2023. "Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots" Crystals 13, no. 2: 251. https://doi.org/10.3390/cryst13020251
APA StyleAbdelsalam, H., Abd-Elkader, O. H., Zaghloul, N. S., & Zhang, Q. (2023). Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots. Crystals, 13(2), 251. https://doi.org/10.3390/cryst13020251