Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron
Abstract
:1. Introduction
2. Method and Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyers, M.A. Dynamic Behavior of Materials; John Wiley & Sons: Hoboken, NJ, USA, 1994; p. 1. [Google Scholar]
- Davidson, R.C.; Arnett, D.; Dahlburg, J.; Dimotakis, P.; Dubin, D.; Gabrielse, G.; Hammer, D.; Katsouleas, T.; Kruer, W.; Lovelas, R.; et al. Frontiers in High Energy Density Physics: The X-Games of Contemporary Science; The National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Lorenzana, H.E.; Belak, J.F.; Bradley, K.S.; Bringa, E.M.; Budil, K.S.; Cazamias, J.U.; El-Dasher, B.; Hawreliak, J.A.; Hessler, J.; Kadau, K.; et al. Shocked materials at the intersection of experiment and simulation. Sci. Model. Simul. 2008, 15, 159–186. [Google Scholar] [CrossRef]
- Rudd, R.E.; Germann, T.C.; Remington, B.A.; Wark, J.S. Metal deformation and phase transitions at extremely high strain rates. MRS Bull. 2010, 35, 999–1006. [Google Scholar] [CrossRef]
- Amadou, N.; de Resseguier, T.; Dragon, A.; Brambrink, E. Coupling between plasticity and phase transition in shock- and ramp-compressed single-crystal iron. Phys. Rev. B 2018, 98, 024104. [Google Scholar] [CrossRef]
- Baty, S.R.; Burakovsky, L.; Errandonea, D. Ab Initio Phase Diagram of Copper. Crystals 2021, 11, 537. [Google Scholar] [CrossRef]
- Barker, L.M.; Hollenbach, R.E. Shock wave study of the α ⇌ ε phase transition in iron. J. Appl. Phys. 1974, 45, 4872. [Google Scholar] [CrossRef]
- Arnold, W. Dynamisches Werkstoffverhalten von Armco-Eisen bei Stosswellenbelastung; VDI-Verlag: Duesseldorf, Germany, 1992. [Google Scholar]
- Jensen, B.; Gray, G.T., III; Hixson, R.S. Direct measurements of the α−ε transition stress and kinetics for shocked iron. J. Appl. Phys. 2009, 105, 103502. [Google Scholar] [CrossRef]
- Boettger, J.C.; Wallace, D.C. Metastability and dynamics of the shock-induced phase transition in iron. Phys. Rev. B 1997, 55, 2840–2849. [Google Scholar] [CrossRef]
- Amadou, N.; de Resseguier, T.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Morard, G.; Guyot, F.; Miyanishi, K.; Ozaki, N.; et al. Kinetics of the iron α-ε phase transition at high-strain rates: Experiment and model. Phys. Rev. B 2016, 93, 214108. [Google Scholar] [CrossRef]
- Smith, R.F.; Eggert, J.H.; Rudd, R.E.; Swift, D.C.; Bolme, C.A.; Collins, G.W. High strain-rate plastic flow in Al and Fe. J. Appl. Phys. 2011, 110, 123515. [Google Scholar] [CrossRef]
- Smith, R.F.; Eggert, J.H.; Swift, D.C.; Wang, J.; Duffy, T.S.; Braun, D.G.; Rudd, R.E.; Reisman, D.B.; Davis, J.-P.; Knudson, M.D.; et al. Time-dependence of the alpha to epsilon phase transformation in iron. J. Appl. Phys. 2013, 114, 223507. [Google Scholar] [CrossRef] [Green Version]
- Hawreliak, J.A.; El-Dasher, B.; Lorenzana, H.; Kimminau, G.; Higginbotham, A.; Nagler, B.; Vinko, S.M.; Murphy, W.J.; Whitcher, T.; Wark, J.S.; et al. In situ X-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron. Phys. Rev. B 2011, 83, 144114. [Google Scholar] [CrossRef]
- Ashitkov, S.; Komarov, P.; Romashevskiy, S.; Struleva, E.; Evlashin, S. Shock compression of magnesium alloy by ultrashort loads driven by sub-picosecond laser pulses. J. Appl. Phys. 2022, 132, 175104. [Google Scholar] [CrossRef]
- Crowhurst, J.C.; Armstrong, M.R.; Knight, K.B.; Zaug, J.M.; Behymer, E.M. Invariance of the Dissipative Action at Ultrahigh Strain Rates Above the Strong Shock Threshold. Phys. Rev. Lett. 2011, 107, 144302. [Google Scholar] [CrossRef] [PubMed]
- Crowhurst, J.C.; Reed, B.W.; Armstrong, M.R.; Radousky, H.B.; Carter, J.A.; Swift, D.C.; Zaug, J.M.; Minich, R.W.; Teslich, N.E.; Kumar, M. The phase transition in iron at strain rates up to 109 s−1. J. Appl. Phys. 2014, 115, 113506. [Google Scholar] [CrossRef]
- Hwang, H.; Galtier, E.; Cynn, H.; Eom, I.; Chun, S.H.; Bang, Y.; Hwang, G.C.; Choi, J.; Kim, T.; Kong, M.; et al. Subnanosecond phase transition dynamics in laser-shocked iron. Sci. Adv. 2020, 6, eaaz5132. [Google Scholar] [CrossRef]
- Gunkelmann, N.; Bringa, E.M.; Tramontina, D.R.; Ruestes, C.J.; Suggit, M.J.; Higginbotham, A.; Wark, J.S.; Urbassek, H.M. Shock waves in polycrystalline iron: Plasticity and phase transitions. Phys. Rev. B 2014, 89, 140102. [Google Scholar] [CrossRef]
- Gunkelmann, N.; Bringa, E.M.; KKang, K.; Ackland, G.J.; Ruestes, C.J.; Urbassek, H.M. Polycrystalline iron under compression: Plasticity and phase transitions. Phys. Rev. B 2012, 86, 144111. [Google Scholar] [CrossRef]
- Wang, K.; Chen, J.; Zhu, W.; Hu, W.; Xiang, M. Phase transition of iron-based single crystals under ramp compressions with extreme strain rates. Int. J. Plast. 2017, 96, 56–80. [Google Scholar] [CrossRef]
- Wang, K.; Xiao, S.; Deng, H.; Zhu, W.; Hu, W. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals. Int. J. Plast. 2014, 59, 180–198. [Google Scholar] [CrossRef]
- Harrison, R.; Voter, A.F.; Chen, S.-P. Atomistic Simulation of Material; Vitek, V., Srolovitz, D.J., Eds.; Plenum: New York, NY, USA, 1989; p. 219. [Google Scholar]
- Kadau, K.; Germann, T.C.; Lomdahl, P.S.; Holian, B.L. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys. Rev. B 2005, 72, 064120. [Google Scholar] [CrossRef]
- Shao, J.-L.; He, W.; Xi, T.; Xin, J. Microscopic insight into the structural transition of single crystal iron under the ramp wave loading. Comput. Mater. Sci. 2020, 182, 109772. [Google Scholar] [CrossRef]
- Amadou, N.; de Resseguier, T.; Dragon, A.; Brambrink, E. Effects of orientation, lattice defects and temperature on plasticity and phase transition in ramp-compressed single crystal iron. Comput. Mater. Sci. 2020, 172, 109318. [Google Scholar] [CrossRef]
- Amadou, N.; de Resseguier, T.; Dragon, A. Coupling between plasticity and phase transition in single crystal iron at ultra-high strain rate. AIP Conf. Proc. 2020, 2272, 070001. [Google Scholar]
- Amadou, N.; de Resseguier, T.; Dragon, A. Influence of point defects and grain boundaries on plasticity and phase transition in uniaxially-compressed iron. Comput. Condens. Matter 2021, 27, e00560. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys. Rev. Lett. 1983, 50, 1285–1288. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar]
- Wehrenberg, C.E.; McGonegle, D.; Bolme, C.; Higginbotham, A.; Lazicki, A.; Lee, H.J.; Nagler, B.; Park, H.-S.; Remington, B.A.; Rudd, R.E.; et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 2017, 550, 496. [Google Scholar] [CrossRef]
- Zepeda-Ruiz, L.A.; Stukowski, A.; Oppelstrup, T.; Bulatov, V.V. Probingthe limits of metal plasticity with molecular dynamics simulations. Nature 2017, 550, 492. [Google Scholar] [CrossRef]
- Stone, G.A.; Orava, R.N.; Gray, G.T.; Pelton, A.R. An Investigation of the Influence of Shock-Wave Profile on the Mechanical and Thermal Responses of Polycrystalline Iron. U. S. Army Research Office, Report Number SMTJ-78 1978. p. 30. Available online: https://archive.org/details/DTIC_ADA049764 (accessed on 23 January 2022).
- de Resseguier, T.; Hallouin, M. Stress relaxation and precursor decay in laser shock-loaded iron. J. Appl. Phys. 1998, 84, 1932–1938. [Google Scholar] [CrossRef]
- Knudson, M.D.; Gupta, Y.M. Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals. J. Appl. Phys. 2002, 91, 9561–9571. [Google Scholar] [CrossRef]
- Steinberg, D.J.; Cochran, S.G.; Guinan, M.W. A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 1980, 51, 1498–1504. [Google Scholar] [CrossRef]
- Remington, B.A.; Allen, P.; Bringa, E.M.; Hawreliak, J.; Ho, D.; Lorenz, K.T.; Lorenzana, H.; McNaney, J.M.; Meyers, M.A.; Pollaine, S.W.; et al. Material dynamics under extreme conditions of pressure and strain rate. Mater. Sci. Technol. 2006, 22, 474–488. [Google Scholar] [CrossRef]
- Swegle, J.W.; Grady, D.E. Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 1985, 58, 692–701. [Google Scholar] [CrossRef]
- Grady, D.E. Structured shock waves and the fourth-power law. J. Appl. Phys. 2010, 107, 013506. [Google Scholar] [CrossRef]
- Ravelo, R.; Germann, T.C.; Guerrero, O.; An, Q.; Holian, B.L. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations. Phys. Rev. B 2013, 88, 134101. [Google Scholar] [CrossRef]
- Swift, D.C.; Kraus, R.G.; Loomis, E.N.; Hicks, D.G.; McNaney, J.M.; Johnson, R.P. Shock formation and the ideal shape of ramp compression waves. Phys. Rev. E 2008, 78, 066115. [Google Scholar] [CrossRef]
- Higginbotham, A.; Hawreliak, J.; Bringa, E.M.; Kimminau, G.; Park, N.; Reed, E.; Remington, B.A.; Wark, J.S. Molecular dynamics simulations of ramp-compressed copper. Phys. Rev. B 2012, 85, 024112. [Google Scholar] [CrossRef]
- Amadou, N.; Brambrink, E.; de Rességuier, T.; Manga, A.O.; Aboubacar, A.; Borm, B.; Molineri, A. Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates. Metals 2016, 6, 320. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadou, N.; Abdoulaye, A.R.A.; De Rességuier, T.; Dragon, A. Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron. Crystals 2023, 13, 250. https://doi.org/10.3390/cryst13020250
Amadou N, Abdoulaye ARA, De Rességuier T, Dragon A. Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron. Crystals. 2023; 13(2):250. https://doi.org/10.3390/cryst13020250
Chicago/Turabian StyleAmadou, Nourou, Abdoul Razak Ayouba Abdoulaye, Thibaut De Rességuier, and André Dragon. 2023. "Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron" Crystals 13, no. 2: 250. https://doi.org/10.3390/cryst13020250
APA StyleAmadou, N., Abdoulaye, A. R. A., De Rességuier, T., & Dragon, A. (2023). Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron. Crystals, 13(2), 250. https://doi.org/10.3390/cryst13020250