Thermal Decomposition and Solidification Characteristics of BFFO
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Thermal Analysis (TA)
2.3. Solidification Characteristics
2.3.1. Solidification Temperature Curve Test
2.3.2. Programmed Solidification Test
2.3.3. Solidification Defects Characterization
2.3.4. Mechanical Property Test
3. Results and Discussion
3.1. Thermal Behavior
3.1.1. Thermal Decomposition Study by DSC
3.1.2. Volatility under Isothermal Conditions
3.1.3. Calculation of BFFO Thermal Explosion Temperature
3.2. Solidification Characteristics Study
3.2.1. Solidification Temperature Curve Test
3.2.2. Programmed Solidification Test
3.2.3. Solidification Defects Study
3.2.4. Mechanical Property Test
3.2.5. Analysis of Solidification and Crystallization Behavior
- The width of solidification zone during layer-by-layer solidification is very narrow, and the front is in direct contact with the melt. The volume shrinkage occurs when the liquid phase solidifies into solid phase, and the melt can be replenished continuously, leading to very small possibility of dispersed shrinkage in the casting. A concentrated shrinkage cavity will be left at the final solidified part. In this case, the feeder can be used to eliminate the defects inside the casting.
- The solidification zone of volumetric solidification is wide, and it can easily develop into a dendritic structure with developed dendritic crystals. When these dendrites are connected to each other, the unsolidified melt is divided into disconnected melt pools, and dispersed shrinkage cavities are finally formed in the casting. It is difficult to eliminate the internal defects of such castings via feeders.
- Mid-solidification is a solidification form between layer-by-layer solidification and volumetric solidification.
4. Conclusions
- The DSC curves indicate that the peak temperature of the BFFO decomposition process was 271.1 °C under a static pressure of 2 MPa and the volatility of BFFO at 120 °C was significantly lower than those of TNT, DNAN and DNTF.
- The solidification curve indicated that the solidification process of BFFO exhibited a basic linear uniform solidification process, which was obviously different from the clear platform of TNT, DNAN and DNTF.
- The results of the CT defects indicate that the facet of BFFO was much smoother and possessed fewer defects in the solidified charge. The relatively linear solidification characteristic leads to the generation of dense and small grains in the solidification process of BFFO.
- The reduction in solidification defects also further improved the mechanical properties of BFFO, with significant improvements in compressive and tensile strength compared to DNTF, DNAN and TNT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravi, P.; Badgujar, D.M.; Gore, G.M.; Tewari, S.P.; Sikder, A.K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36, 393–403. [Google Scholar] [CrossRef]
- Szala, M.; Sabatini, J.J. 2,4,6-Trinitrotoluene—A Useful Starting Compound in the Synthesis of Modern Energetic Materials. Z. Anorg. Allg. Chem. 2018, 644, 262–269. [Google Scholar] [CrossRef]
- Levine, B.S.; Furedi, E.M.; Gordon, D.E.; Barkley, J.J.; Lish, P.M. Toxic Interactions of the Munitions Compounds TNT and RDX in F344 Rats. Toxicol. Sci. 1990, 15, 373–380. [Google Scholar] [CrossRef]
- Latendresse, C.; Fernandes, S.; You, S.; Euler, W. Speciation of the Products of and Establishing the Role of Water in the Reaction of TNT with Hydroxide and Amines: Structure, Kinetics, and Computational Results. J. Phys. Chem. A 2013, 117, 11167–11182. [Google Scholar] [CrossRef]
- Yinon, J. Toxicity and Metabolism of Explosives; CRC Press: Boca Raton, FL, USA, 1990; pp. 38–39. [Google Scholar]
- Esteve-Nunez, A.; Caballero, A.; Ramos, J.L. Biological Degradation of 2,4,6-Trinitrotoluene. Microbiol. Mol. Biol. Rev. 2001, 65, 335–352. [Google Scholar] [CrossRef]
- Johnson, E.C.; Sabatini, J.J.; Chavez, D.E.; Sausa, R.C.; Byrd, E.F.; Wingard, L.A.; Guzmàn, P.E. Bis(1,2,4-oxadiazole)bis(methylene) Dinitrate: A High-Energy MeltCastable Explosive and Energetic Propellant Plasticizing Ingredient. Org. Process Res. Dev. 2018, 22, 736–740. [Google Scholar] [CrossRef]
- Wang, Q.H. Overview of Carrier Explosive for Melt-Cast Composite Explosive. Chin. J. Explos. Propellants 2011, 34, 25–28. [Google Scholar]
- Sinditskii, V.P.; Vu, M.C.; Sheremetev, A.B.; Alexandrova, N.S. Study on thermal decomposition and combustion of insensitive explosive 3,3′-diamino-4,4′-azofurazan (DAAzF). Thermochim. Acta 2008, 473, 25–31. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Makhova, N.N.; Friedrichsen, W. Monocyclic furazans and furoxans. In Advances in Heterocyclic Chemistry; Academic Press: Cambridge, MA, USA, 2001; Volume 78, pp. 65–188. [Google Scholar]
- Pepekin, V.I.; Korsunskii, B.L.; Matyushin, Y.N. Explosive properties of furoxanes. Combust. Explos. Shock Waves 2008, 44, 110–114. [Google Scholar] [CrossRef]
- Bogdanova, Y.A.; Gubin, S.; Korsunskii, B.; Pepekin, V. Detonation characteristics of powerful insensitive explosives. Combust. Explos. Shock Waves 2009, 45, 738–743. [Google Scholar] [CrossRef]
- Sheremetev, A. Nitro-and nitraminofurazans. Ross Khim Zhurn 1997, 41, 43–54. [Google Scholar]
- Veauthier, J.M.; Chavez, D.E.; Tappan, B.C.; Parrish, D.A. Synthesis and Characterization of Furazan Energetics ADAAF and DOATF. J. Energetic Mater. 2010, 28, 229–249. [Google Scholar] [CrossRef]
- Sinditskii, V.; Vu, M.; Burzhava, A.; Sheremetev, A.; Batog, L. Decomposition and combustion of 4, 4′-bis [4-aminofurazan-3-yl-azoxy]-3, 3’-azofurazan and its macrocyclic analog. In Proceedings of the 14th Seminar “New Trends in Research of Energetic Materials”, Pardubice, Czech Republic, 13–15 April 2011; NTREM, University of Pardubice: Pardubice, Czech Republic, 2011; pp. 329–341. [Google Scholar]
- Sheremetev, A.B.; Ivanova, E.A.; Spiridonova, N.; Melnikova, S.; Tselinsky, I.; Suponitsky, K.Y.; Antipin, M.Y. Desilylative nitration of C, N-disilylated 3-amino-4-methylfurazan. J. Heterocycl. Chem. 2005, 42, 1237–1242. [Google Scholar] [CrossRef]
- Feng-Qi, Z.; Pei, C.; Rong-Zu, H.; Yang, L.; Zhi-Zhong, Z.; Yan-Shui, Z.; Xu-Wu, Y.; Yin, G.; Sheng-Li, G.; Qi-Zhen, S. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-dinitrofurazanfuroxan (DNTF). J. Hazard. Mater. 2004, 113, 67–71. [Google Scholar] [CrossRef]
- Kotomin, A.A.; Kozlov, A.S.; Dushenok, S.A. Detonatability of high-energy-density heterocyclic compounds. Russ. J. Phys. Chem. B 2007, 1, 573–575. [Google Scholar] [CrossRef]
- Zhou, Y.-S.; Zhang, Z.-Z.; Li, J.-K. Crystal structure of 3, 4-dinitrofurazanofuroxan. Chin. J. Explos. Propellants 2005, 28, 43. [Google Scholar]
- Zhou, Y.; Xu, K.; Wang, B.; Zhang, H.; Qiu, Q.; Zhao, F. Synthesis, Structure and Thermal Properties of Bifurazano [3, 4-b: 3′, 4′-f] furoxano [3″, 4″-d] oxacyclohetpatriene (BFFO). Bull. Korean Chem. Soc. 2012, 33, 3317–3320. [Google Scholar] [CrossRef]
- Stepanov, A.I.; Astrat’ev, A.A.; Dashko, D.V.; Spiridonova, N.P.; Mel’nikova, S.F.; Tselinskii, I.V. Synthesis of linear and cyclic compounds containing the 3,4-bis(furazan-3-yl)furoxan fragment. Russ. Chem. Bull. 2012, 61, 1024–1040. [Google Scholar] [CrossRef]
- Stepanov, A.I.; Dashko, D.V.; Astrat’ev, A.A. Reduction of 7-R derivatives of 7H-tris[1,2,5]oxa-diazolo[3,4-b:3′,4′-d:3″,4″-f]azepine 1-oxide with furoxan ring opening. preparation of 4-R-4H-bis-[1,2,5]oxadiazolo[3,4-b:3’,4’-f]azepine-8,9-diamines. Chem. Heterocycl. Compd. 2013, 49, 1068–1081. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Wang, B.Z.; Wang, X.J.; Zhou, C.; Ning, Y.L.; Lian, P.; Li, J.K.; Zhang, G.Y. Synthesis and quantum chemistry study of novel bifurazano [3,4-b:3’,4’-f]furoxano[3”,4”-d]oxacyclohetpatriene. Chin. J. Synth. Chem. 2012, 20, 147–152. [Google Scholar]
- Luo, Y.M.; Jiang, Q.L.; Zhao, K.; Wang, H. Analysis on differences of solidification behavior of DNAN and TNT. Chin. J. Explos. Propellants 2015, 38, 37–40. [Google Scholar] [CrossRef]
- Luo, Y.M.; Zhao, K.; Jiang, Q.L.; Wang, H.; Wang, H.X. Difference analysis between solidification behavior of DNTF and TNT. Hanneng Cailiao 2016, 24, 74–78. [Google Scholar]
- Chang, G.Q.; Wang, J.Z. Crystal Growth and Control during Metal Solidification Process; Metallurgical Industry Press: Beijing, China, 2002; p. 97. [Google Scholar]
Tm (°C) | ρ (g·cm−3) | IS (%) 1 | FS (%) 2 | H50 (cm) 3 | D (m·s−1) 4 | QV (J·g−1) 5 |
---|---|---|---|---|---|---|
92–94 | 1.870 | 12 | 0 | 57.5 | 8256 | 6162 |
Sample | Fitting Equations | R 1 |
---|---|---|
BFFO | y = −3.31446x + 99.34044 | 0.99968 |
TNT | y = −5.29571x + 10028905 | 0.99862 |
DNAN | y = −7.60659x + 100.37098 | 0.99975 |
DNTF | y = −80.07014x + 99.82379 | 0.99996 |
EMs | Φ × h (mm) | Density (g·cm−3) | Compressive Strength (Mpa) | Tensile Strength (Mpa) |
---|---|---|---|---|
BFFO | 20 × 20 | 1.774 | 6.07 | 2.44 |
DNTF | 20 × 20 | 1.687 | 3.24 | 1.25 |
DNAN | 20 × 20 | 1.514 | 2.67 | 1.32 |
TNT | 20 × 20 | 1.573 | 3.88 | 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Ju, R.; Li, B.; Meng, J.; Wang, X. Thermal Decomposition and Solidification Characteristics of BFFO. Crystals 2023, 13, 802. https://doi.org/10.3390/cryst13050802
Luo Y, Ju R, Li B, Meng J, Wang X. Thermal Decomposition and Solidification Characteristics of BFFO. Crystals. 2023; 13(5):802. https://doi.org/10.3390/cryst13050802
Chicago/Turabian StyleLuo, Yiming, Ronghui Ju, Bingbo Li, Junjiong Meng, and Xuanjun Wang. 2023. "Thermal Decomposition and Solidification Characteristics of BFFO" Crystals 13, no. 5: 802. https://doi.org/10.3390/cryst13050802
APA StyleLuo, Y., Ju, R., Li, B., Meng, J., & Wang, X. (2023). Thermal Decomposition and Solidification Characteristics of BFFO. Crystals, 13(5), 802. https://doi.org/10.3390/cryst13050802