Si-Doped Nitrogenated Holey Graphene (C2N) as a Promising Gas Sensor for O-Containing Volatile Organic Compounds (VOCs) and Ammonia
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Geometric Configurations and Electronic Properties of Si-Doped C2N
3.2. Adsorption of Gases on Pristine C2N
3.3. Adsorption of Gases on SiC2N
3.3.1. Binding Configurations and Adsorption Energies
3.3.2. Interaction Mechanism
3.4. Sensor Explanation of Si-Doped C2N Sheet
3.4.1. Sensor Performance of SiC2N
3.4.2. The Effect of Si Doping Density
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, K.; Zhang, J.S.; Wargocki, P.; Knudsen, H.N.; Varshney, P.K.; Guo, B. Model-based approach to account for the variation of primary VOC emissions over time in the identification of indoor VOC sources. Build Environ. 2012, 57, 403–416. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Salthammer, T. Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air 2016, 26, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Miah, M.R.; Yang, M.; Khandaker, S.; Bashar, M.M.; Alsukaibi, A.K.D.; Hassan, H.M.A.; Znad, H.; Awual, M.R. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sens. Actuator A Phys. 2022, 347, 113933. [Google Scholar] [CrossRef]
- Thangamani, G.J.; Deshmukh, K.; Kovářík, T.; Nambiraj, N.A.; Ponnamma, D.; Sadasivuni, K.K.; Khalil, H.P.S.A.; Pasha, S.K.K. Graphene oxide nanocomposites based room temperature gas sensors: A review. Chemosphere 2021, 280, 130641. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuat. B-Chem. 2012, 173, 1–21. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuat. B-Chem. 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, X.; Weng, K.; Arramel, A.; Jiang, J.; Ong, W.J.; Zhang, P.; Zhao, X.; Li, N. Highly Sensitive and Selective Gas Sensor Using Heteroatom Doping Graphdiyne: A DFT Study. Adv. Electron. Mater. 2021, 7, 2001244. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Wu, W.; Jin, M.; Zhou, Q.; Fu, L.; Zare, N.; Karimi, F.; Moghadam, M. Graphdiyne applications in sensors: A bibliometric analysis and literature review. Chemosphere 2022, 307, 135720. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. Black Phosphorus Gas Sensors. ACS nano 2015, 9, 5618–5624. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Dai, Z.; Liu, Y.; Zhang, X.; Zeng, H. Suppression of Sn2+ and Lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Sci. Bull. 2021, 66, 2471–2478. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Yu, Z.; Quhe, R.; Zhou, S.; Wang, Y.; Liu, C.C.; Zhong, H.; Han, N.; Lu, J.; et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151. [Google Scholar] [CrossRef]
- Fernández-Escamilla, H.N.; Guerrero-Sánchez, J.; Martínez-Guerra, E.; Takeuchi, N. Adsorption and dissociation of NO2 on silicene. Appl. Surf. Sci. 2019, 498, 143854. [Google Scholar] [CrossRef]
- Meng, R.; Pereira, L.D.; Locquet, J.P.; Afanasev, V.; Pourtois, G.; Houssa, M. Hole-doping induced ferromagnetism in 2D materials. npj Comput Mater 2022, 8, 230. [Google Scholar] [CrossRef]
- Du, A.; Sanvito, S.; Smith, S. First-Principles Prediction of Metal-Free Magnetism and Intrinsic Half-Metallicity in Graphitic Carbon Nitride. Phys. Rev. Lett. 2012, 108, 197207. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.M.; Cao, X.R.; Wei, X.; Cao, J.Y.; Lin, K.X.; Zhou, Y.Y.; Ai, Y.J. Hydrogenated Si-doped g-C3N4: Promising electrocatalyst for CO2 capture and conversion. Appl. Surf. Sci. 2023, 614, 156195. [Google Scholar] [CrossRef]
- Long, J.; Xie, X.; Xu, J.; Gu, Q.; Chen, L.; Wang, X. Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols. ACS Catal. 2012, 2, 622–631. [Google Scholar] [CrossRef]
- Mahmood, J.; Lee, E.K.; Jung, M.; Shin, D.; Jeon, I.Y.; Jung, S.M.; Choi, H.J.; Seo, J.M.; Bae, S.Y.; Sohn, S.D.; et al. Nitrogenated holey two-dimensional structures. Nat. Commun. 2015, 6, 6486. [Google Scholar] [CrossRef]
- Yar, M.; Hashmi, M.A.; Ayub, K. The C2N surface as a highly selective sensor for the detection of nitrogen iodide from a mixture of NX3 (X = Cl, Br, I) explosives. RSC Adv. 2020, 10, 31997–32010. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K.; Pratik, S.M.; Datta, A. Controlled Pore Sizes in Monolayer C2N Act as Ultrasensitive Probes for Detection of Gaseous Pollutants (HF, HCN, and H2S). J. Phys. Chem. C 2018, 122, 2248–2258. [Google Scholar] [CrossRef]
- Yar, M.; Ahsan, F.; Gulzar, A.; Ayub, K. Adsorption and sensor applications of C2N surface for G-series and mustard series chemical warfare agents. Microporous Mesoporous Mater. 2021, 317, 110984. [Google Scholar] [CrossRef]
- Yong, Y.; Cui, H.; Zhou, Q.; Su, X.; Kuang, Y.; Li, X. C2N monolayer as NH3 and NO sensors: A DFT study. Appl. Surf. Sci. 2019, 487, 488–495. [Google Scholar] [CrossRef]
- Huang, C.; Mahmood, J.; Wei, Z.; Wang, D.; Liu, S.; Zhao, Y.; Noh, H.J.; Ma, J.; Xu, J.; Baek, J.B. Metal (M = Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Mater. Today Energy 2019, 14, 100359. [Google Scholar] [CrossRef]
- Hussain, T.; Sajjad, M.; Singh, D.; Bae, H.; Lee, H.; Larsson, J.A.; Ahuja, R.; Karton, A. Sensing of volatile organic compounds on two-dimensional nitrogenated holey graphene, graphdiyne, and their heterostructure. Carbon 2020, 163, 213–223. [Google Scholar] [CrossRef]
- Su, Y.; Ao, Z.; Ji, Y.; Li, G.; An, T. Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: A DFT investigation. Appl. Surf. Sci. 2018, 450, 484–491. [Google Scholar] [CrossRef]
- Tong, B.; Meng, G.; Deng, Z.; Gao, J.; Liu, H.; Dai, T.; Wang, S.; Shao, J.; Tao, R.; Kong, F.; et al. Sc-doped NiO nanoflowers sensor with rich oxygen vacancy defects for enhancing VOCs sensing performances. J. Alloys Compd. 2021, 851, 155760. [Google Scholar] [CrossRef]
- Tomer, V.K.; Duhan, S. Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J. Mater. Chem. A 2016, 4, 1033–1043. [Google Scholar] [CrossRef]
- Matsoso, J.B.; Antonatos, N.; Kumar, P.R.; Jellett, C.; Mazánek, V.; Journet, C.; Sofer, Z. Simultaneous microwave-assisted reduction and B/N co-doping of graphene oxide for selective recognition of VOCs. J. Mater. Chem. C 2022, 10, 3307–3317. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, C.; Huang, Q.; Yan, J. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal. Chemosphere 2022, 291, 132702. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, L.; Fu, S.; Cheng, S.; Gao, N.; Li, H. Highly efficient VOC gas sensors based on Li-doped diamane. Appl. Surf. Sci. 2023, 611, 155694. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L. Adsorption mechanisms of different toxic molecular gases on intrinsic C2N and Ti-C2N-V monolayer: A DFT study. J. Mol. Model 2022, 28, 289. [Google Scholar] [CrossRef]
- Ren, Y.; Zou, Y.; Liu, Y.; Zhou, X.; Ma, J.; Zhao, D.; Wei, G.; Ai, Y.; Xi, S.; Deng, Y. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Güntner, A.T.; Righettoni, M.; Pratsinis, S.E. Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sens. Actuat. B-Chem. 2016, 223, 266–273. [Google Scholar] [CrossRef]
- Singsen, S.; Watwiangkham, A.; Ngamwongwan, L.; Fongkaew, I.; Jungthawan, S.; Suthirakun, S. Defect Engineering of Green Phosphorene Nanosheets for Detecting Volatile Organic Compounds: A Computational Approach. ACS Appl. Nano Mater. 2023, 6, 1496–1506. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E. Efficient hybrid density functional calculations in solids: Assess-ment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Brandbyge, K.; Mozos, J.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2001, 65, 165401. [Google Scholar] [CrossRef]
- Krack, M.; Parrinello, M. All-electron ab-initio molecular dynamics. Phys. Chem. Chem. Phys. 2000, 2, 2105–2112. [Google Scholar] [CrossRef]
- Kishore, M.R.A.; Ravindran, P. Enhanced Photocatalytic Water Splitting in a C2N Monolayer by C-Site Isoelectronic Substitution. ChemPhysChem 2017, 18, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Navas, J.; Sánchez-Coronilla, A.; Gallardo, J.J.; Cruz Hernández, N.; Piñero, J.C.; Alcántara, R.; Fernández-Lorenzo, C.; De los Santos, D.M.; Aguilar, T.; Martín-Calleja, J. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+. Nanoscale 2015, 7, 6216–6229. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
- Zhu, B.C.; Deng, P.J.; Zeng, L.; Guo, J. Computational exploration of gallium-doped neutral and anionic magnesium nanocluster materials: Ga2Mgnq (n=1-11; q=0, -1) nanocluster’s properties based on DFT. Mater. Today Commun. 2021, 29, 103004. [Google Scholar] [CrossRef]
- Wei, B.; Mei, Q.; An, Z.; Li, M.; Qiu, Z.; Bo, X.; He, M. Nonmetal-Doped C2N Nanosheets for Removal of Methoxyphenols: A First-Principles Study. ACS Appl. Nano Mater. 2021, 4, 478–486. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, Z.; Meng, Y.; Tang, H.; Ni, Z.; Xia, S. Theoretical study on the mechanism of CO2 adsorption and reduction by single-atom M (M = Cu, Co, Ni) doping C2N. Chem. Phys. Lett. 2022, 804, 139902. [Google Scholar] [CrossRef]
- Gergen, B.; Nienhaus, H.; Weinberg, W.H.; McFarland, E.W. Chemically Induced Electronic Excitations at Metal Surfaces. Science 2001, 294, 2521–2523. [Google Scholar] [CrossRef] [PubMed]
- Kaewmaraya, T.; Ngamwongwan, L.; Moontragoon, P.; Karton, A.; Hussain, T. Drastic Improvement in Gas-Sensing Characteristics of Phosphorene Nanosheets under Vacancy Defects and Elemental Functionalization. J. Phys. Chem. C 2018, 122, 20186–20193. [Google Scholar] [CrossRef]
- Xia, S.Y.; Tao, L.Q.; Jiang, T.; Sun, H.; Li, J. Rh-doped h-BN monolayer as a high sensitivity SF6 decomposed gases sensor: A DFT study. Appl. Surf. Sci. 2021, 536, 147965. [Google Scholar] [CrossRef]
- Aref, A.; Roohollah, J.; Sadegh, M.A.; Balaji, P. Novel green phosphorene as a superior gas sensor for dissolved gas analysis in oil transformers: Using DFT method. Mol. Simul. 2022, 48, 541–550. [Google Scholar] [CrossRef]
- Ghashghaee, M.; Ghambarian, M. Highly improved carbon dioxide sensitivity and selectivity of black phosphorene sensor by vacancy doping: A quantum chemical perspective. Int. J. Quantum. Chem. 2020, 120, e26265. [Google Scholar] [CrossRef]
- Aasi, A.; Aghaei, S.M.; Panchapakesan, B. Pt-decorated phosphorene as a propitious room temperature VOC gas sensor for sensitive and selective detection of alcohols. J. Mater. Chem. C 2021, 9, 9242–9250. [Google Scholar] [CrossRef]
- Cao, W.; Zhao, Q.; Yang, L.; Cui, H. Enhanced NOx adsorption and sensing properties of MoTe2 monolayer by Ni-doping: A first-principles study. Surf. Interfaces 2021, 26, 101372. [Google Scholar] [CrossRef]
- Wang, X.L. Potential application of BC3 nanotubes as a gamma-hydroxybutyric acid drug sensor: A DFT study. Comput Theor Chem 2021, 1202, 113299. [Google Scholar] [CrossRef]
- Long, Y.; Xia, S.-Y.; Guo, L.-Y.; Tan, Y.; Huang, Z. As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor. Sensors 2022, 22, 4797. [Google Scholar] [CrossRef]
- Baikie, I.D.; Mackenzie, S.; Estrup, P.J.Z.; Meyer, J.A. Noise and the Kelvin method. Rev. Sci. Instrum. 1991, 62, 1326–1332. [Google Scholar] [CrossRef]
- Richardson, O.W. Electron Emission from Metals as a Function of Temperature. Phy. Rev. 1924, 23, 153–155. [Google Scholar] [CrossRef]
- Ma, S.X.; Li, D.J.; Rao, X.J.; Xia, X.F.; Su, Y.; Lu, Y.F. Pd-doped h-BN monolayer: A promising gas scavenger for SF6 insulation devices. Adsorption 2020, 26, 619–626. [Google Scholar] [CrossRef]
- Niu, J.S.; Chen, P.L.; Lin, K.W.; Tsai, J.H.; Hsu, W.C.; Liu, W.C. An Indium-Gallium-Zinc-Oxide Layer Decoratedwith Gold Nanoparticles for Ultrahigh Sensitive Formaldehyde Gas Detection. IEEE Trans. Electron. Devices 2023, 70, 269–274. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Liu, J.; Chen, X.; Xu, Z.; Ma, Q.; Wang, Z.; Liang, J.; Li, S.; Yan, W. Designing highly sensitive formaldehyde sensors via A-site cation deficiency in LaFeO3 hollow nanofibers. Appl. Surf. Sci. 2022, 590, 153085. [Google Scholar] [CrossRef]
- Lu, Z.; Sima, Z.; Song, P. MOF-derived nest-like hierarchical In2O3 structures with enhanced gas sensing performance for formaldehyde detection at low temperature. Inorg. Chem. Commun. 2022, 146, 110133. [Google Scholar] [CrossRef]
- Cai, H.; Luo, N.; Hu, Q.; Xue, Z.; Wang, X.; Xu, J. Multishell SnO2 Hollow Microspheres Loaded with Bimetal PdPt Nanoparticles for Ultrasensitive and Rapid Formaldehyde MEMS Sensors. ACS Sens. 2022, 7, 1484–1494. [Google Scholar] [CrossRef]
- Du, L.; Sun, H. Facile synthesis of ZnO/SnO2 hybrids for highly selective and sensitive detection of formaldehyde. New J. Chem. 2022, 46, 5573–5580. [Google Scholar] [CrossRef]
- Chen, R.J.; Franklin, N.R.; Kong, J.; Cao, J.; Tombler, T.W.; Zhang, Y.; Dai, H. Molecular photodesorption from single-walled carbon nan-tubes. Appl. Phys. Lett. 2001, 79, 2258–2260. [Google Scholar] [CrossRef]
- Aasi, A.; Aghaei, S.M.; Panchapakesan, B. Noble metal (Pt or Pd)-decorated atomically thin MoS2 as a promising material for sensing colorectal cancer biomarkers through exhaled breath. Int. J. Comp. Mat. Sci. Eng. 2023, 2350014. [Google Scholar] [CrossRef]
- Ji, S.; Wang, Z.; Zhao, J. A boron-interstitial doped C2N layer as a metal-free electrocatalyst for N2 fixation: A computational study. J. Mater. Chem. 2019, 7, 2392–2399. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, H.; Shen, S.; Huang, B.; Dai, Y.; Ma, Y. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. 2021, 9, 5434–5441. [Google Scholar] [CrossRef]
Ead (eV) | Δq (Gas) | Ead (eV) | Δq (Gas) | ||
---|---|---|---|---|---|
C2N_HCHO | −0.47 | 0.017 | SiC2N_HCHO | −1.04 | 0.388 |
C2N_CH3OH | −0.53 | 0.019 | SiC2N_CH3OH | −0.90 | 0.057 |
C2N_C3H6O | −0.44 | 0.005 | SiC2N_C3H6O | −0.60 | 0.134 |
C2N_C6H6 | −0.38 | 0.003 | SiC2N_C6H6 | −0.36 | −0.016 |
C2N_C2HCl3 | −0.48 | 0.001 | SiC2N_C2HCl3 | −0.41 | 0.017 |
C2N_NH3 | −0.38 | −0.004 | SiC2N_NH3 | −1.21 | −0.046 |
Eg (eV) | (UV Light) | (UV Light) | (UV Light) | |
---|---|---|---|---|
SiC2N_HCHO | 0.11 | 101 | 10−2 | 10−3 |
SiC2N_CH3OH | ~0 | 10−1 | 10−4 | 10−5 |
SiC2N_C3H6O | 0.07 | 10−6 | 10−8 | 10−9 |
SiC2N_NH3 | ~0 | 104 | 100 | 10−1 |
Si2C2N_HCHO | ~0 | 104 | 101 | 10−1 |
Si2C2N_CH3OH | 0.02 | 102 | 10−1 | 10−3 |
Si2C2N_C3H6O | 0.03 | 10−5 | 10−7 | 10−8 |
Si2C2N_NH3 | 0.02 | 105 | 102 | 100 |
Si4C2N_HCHO | ~0 | 107 | 103 | 101 |
Si4C2N_CH3OH | ~0 | 103 | 100 | 10−2 |
Si4C2N_C3H6O | ~0 | 10−5 | 10−7 | 10−8 |
Si4C2N_NH3 | ~0 | 107 | 103 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ye, C.; Zhao, H.; Lin, K.; Cao, X.; Ai, Y. Si-Doped Nitrogenated Holey Graphene (C2N) as a Promising Gas Sensor for O-Containing Volatile Organic Compounds (VOCs) and Ammonia. Crystals 2023, 13, 816. https://doi.org/10.3390/cryst13050816
Liu Y, Ye C, Zhao H, Lin K, Cao X, Ai Y. Si-Doped Nitrogenated Holey Graphene (C2N) as a Promising Gas Sensor for O-Containing Volatile Organic Compounds (VOCs) and Ammonia. Crystals. 2023; 13(5):816. https://doi.org/10.3390/cryst13050816
Chicago/Turabian StyleLiu, Yang, Chenxiao Ye, Hengxin Zhao, Kexin Lin, Xinrui Cao, and Yuejie Ai. 2023. "Si-Doped Nitrogenated Holey Graphene (C2N) as a Promising Gas Sensor for O-Containing Volatile Organic Compounds (VOCs) and Ammonia" Crystals 13, no. 5: 816. https://doi.org/10.3390/cryst13050816
APA StyleLiu, Y., Ye, C., Zhao, H., Lin, K., Cao, X., & Ai, Y. (2023). Si-Doped Nitrogenated Holey Graphene (C2N) as a Promising Gas Sensor for O-Containing Volatile Organic Compounds (VOCs) and Ammonia. Crystals, 13(5), 816. https://doi.org/10.3390/cryst13050816