Crystal Chemistry and First Principles Studies of Novel Superhard Tetragonal C7, C5N2, and C3N4
Abstract
:1. Introduction
2. Computational Framework
3. Results and Discussion
3.1. Crystal Chemistry and Structure Characterization
- The first hypothesis was to create a dinitride with N-N pairs as shown in Figure 1c, where the white spheres represent the N@C (2e) 0,0,z (Table 1, second data column). After geometric optimization, the final structure shows little deviation from pristine C7, as can be seen from the internal parameters, while the distances show a short d(N-N) = 1.36 Å, larger than the length of the N≡N bond (~1.09 Å) in the N2 molecule. The volume is smaller, resulting in a slightly higher density. The atom-averaged cohesive energy is significantly reduced compared to C7, but the carbonitride labeled α-C5N2 remains cohesive with Ecoh/atom = −1.50 eV/at.
- The second hypothesis was to replace N@C (2g) ½, 0, z (Table 1, third data column), thus creating CN4 tetrahedra at the eight corners as schematically shown in Figure 1d. Therefore, d(C-N) = 1.49 Å is shorter than in C7 and α-C5N2. The remarkable result of such β-C5N2 is the higher (by 0.23 eV) cohesive atomic energy of this configuration, which is clearly more favorable than that of α-C5N2. Finally, the density is higher at 3.252 g/cm3. Therefore, the tetrahedral configuration prevails.
3.2. Trends of Charge Transfer
3.3. Mechanical Properties
3.3.1. Elastic Constants
3.3.2. Hardness
3.4. Dynamical Properties with the Phonons
3.5. Electronic Band Structures
3.6. Density of States (DOS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Qin, J.-X.; Yang, X.-G.; Lv, C.-F.; Li, Y.-Z.; Liu, K.-K.; Zang, J.-H.; Yang, X.; Dong, L.; Shan, C.-X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Wentorf, R.H. Cubic form of boron nitride. J. Chem. Phys. 1957, 26, 956. [Google Scholar] [CrossRef]
- Liu, A.; Wentzcovitch, R. Stability of carbon nitride solids. Phys. Rev. B 1994, 50, 10362–10365. [Google Scholar] [CrossRef] [PubMed]
- Teter, D.; Hemley, R. Low-compressibility carbon nitrides. Science 1996, 271, 53–55. [Google Scholar] [CrossRef]
- Weihrich, R.; Eyert, V.; Matar, S.F. Structure and electronic properties of new model dinitride systems: A density-functional study of CN2, SiN2, and GeN2. Chem. Phys. Lett. 2003, 373, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Weihrich, R.; Matar, S.F.; Betranhandy, E.; Eyert, V. A model study for the breaking of N2 from CNx within DFT. Solid State Sci. 2003, 5, 701–703. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Luo, K.; Liu, B.; Sun, L.; Ying, P.; Liu, C.; Hu, W.; He, J. Superhard carbon-rich C-N compounds hidden in compression of the mixture of carbon black and tetracyanoethylene. Carbon 2021, 184, 846–854. [Google Scholar] [CrossRef]
- Li, X.; Xing, M. Novel carbon-rich nitride C3N: A superhard phase in monoclinic symmetry. Comp. Mater. Sci. 2019, 158, 170–177. [Google Scholar] [CrossRef]
- Hao, J.; Liu, H.; Lei, W.; Tang, X.; Lu, J.; Liu, D.; Li, Y. Prediction of a superhard carbon-rich C-N compound comparable to diamond. J. Phys. Chem. C 2015, 119, 28614–28619. [Google Scholar] [CrossRef]
- Ding, Y. Mechanical properties and hardness of new carbon-rich superhard C11N4 from first-principles investigations. Physica B 2012, 407, 2282–2288. [Google Scholar] [CrossRef]
- Tian, F.; Wang, J.; He, Z.; Ma, Y.; Wang, L.; Cui, T.; Chen, C.; Liu, B.; Zou, G. Superhard semiconducting C3N2 compounds predicted via first-principles calculations. Phys. Rev. B 2008, 78, 235431. [Google Scholar] [CrossRef]
- Qian, Y.; Wu, H. D-C4N3: A superhard ferromagnetic half-metal predicted by first-principles study. Phys. Lett. A 2022, 423, 127814. [Google Scholar] [CrossRef]
- Wang, X. Polymorphic phases of sp3-hybridized superhard CN. J. Chem. Phys. 2012, 138, 184506. [Google Scholar] [CrossRef]
- Dong, H.F.; Oganov, A.R.; Zhu, Q.; Qian, G.R. The phase diagram and hardness of carbon nitrides. Sci. Rep. 2015, 5, 9870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrou, E.; Lobanov, S.; Dong, H.; Oganov, A.R.; Prakapenka, V.B.; Konopkova, Z.; Goncharov, A.F. Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry. Chem. Mater. 2016, 28, 6925–6933. [Google Scholar] [CrossRef]
- Komatsu, T. Shock synthesis and characterization of new diamond-like carbon nitrides. Phys. Chem. Chem. Phys. 2004, 6, 878–880. [Google Scholar] [CrossRef]
- Solozhenko, V.L.; Matar, S.F. Prediction of novel ultrahard phases in the B-C-N system from first principles: Progress and problems. Materials 2023, 16, 886. [Google Scholar] [CrossRef]
- Pickard, C.J.; Salamat, A.; Bojdys, M.J.; Needs, R.J.; McMillan, P.F. Carbon nitride frameworks and dense crystalline polymorphs. Phys. Rev. B 2016, 94, 094104. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, M.; Deb, P. Recent progress in research on multifunctional graphitic carbon nitride: An emerging wonder material beyond catalyst. Carbon 2022, 192, 308–331. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented wave. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.; Burke, K.; Ernzerhof, M. The Generalized Gradient Approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W. Numerical Recipes, 2nd ed.; Cambridge University Press: New York, NY, USA, 1986. [Google Scholar]
- Blöchl, P.; Jepsen, O.; Anderson, O. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.; Pack, J. Special k-points for Brillouin Zone integration. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Bader, R.F.W. A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102, 7314–7323. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Eyert, V. Basic notions and applications of the augmented spherical wave method. Int. J. Quantum Chem. 2000, 77, 1007–1031. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Matar, S.F.; Solozhenko, V.L. Novel ultrahard sp2/sp3 hybrid carbon allotrope from crystal chemistry and first principles: Body centered tetragonal C6 (‘neoglitter’). Diam. Relat. Mater. 2023, 133, 109747. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 2016, 28, 275201. [Google Scholar] [CrossRef] [Green Version]
- Mukhanov, V.A.; Kurakevych, O.O.; Solozhenko, V.L. The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties. J. Superhard Mater. 2008, 30, 368–378. [Google Scholar] [CrossRef]
- Lyakhov, A.O.; Oganov, A.R. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys. Rev. B 2011, 84, 092103. [Google Scholar] [CrossRef] [Green Version]
- Mazhnik, E.; Oganov, A.R. A model of hardness and fracture toughness of solids. J. Appl. Phys. 2019, 126, 125109. [Google Scholar] [CrossRef]
- Bindzus, N.; Straasø, T.; Wahlberg, N.; Becker, J.; Bjerg, L.; Lock, N.; Dippel, A.-C.; Iversen, B.B. Experimental determination of core electron deformation in diamond. Acta Cryst. A 2014, 70, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazhkin, V.V.; Solozhenko, V.L. Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible. J. Appl. Phys. 2019, 125, 130901. [Google Scholar] [CrossRef]
- Krishnan, R.S. Raman spectrum of diamond. Nature 1945, 155, 171. [Google Scholar] [CrossRef]
C7 | α-C5N2 | β-C5N2 | tet-C3N4 | |
---|---|---|---|---|
a (Å) | 2.5290 | 2.5262 | 2.4929 | 2.4848 |
c (Å) | 7.3720 | 7.1428 | 7.2279 | 7.1433 |
C1 (1a) 0, 0, 0 | ✓ | ✓ | ✓ | ✓ |
C2 (2g) ½, 0, z | z = 0.3039 | z = 0.1158 | z = 0.3050 | z = 0.3094 |
C(N) (2g) ½, 0, z | z = 0.1146 | (C) z = 0.3057 | (N) z = 0.113 | (N) z = 0.1138 |
C’(N’) (2e) 0, 0, z | z = 0.3991 | (N’) z = 0.4043 | (C) z = 0.3977 | (N’) z = 0.4053 |
Cell volume (Å3) | 47.15 | 45.58 | 44.92 | 44.10 |
Density (g/cm3) | 2.961 | 3.208 | 3.256 | 3.466 |
Bond length (Å) | 1.396 1.454 1.521 | 1.356 (C-C) 1.367 (N-N) 1.446 (C-N) 1.510 (C-C) | 1.389 (C-N) 1.415 (C-C) 1.476 (C-C) 1.491 (C-N) | 1.353 (N-N) 1.412 (C-N) 1.485 (C-N) |
Etotal (eV) | −60.88 | −57.13 | −58.70 | −54.23 |
Ecoh/atom (eV) | −2.09 | −1.50 | −1.73 | −1.03 |
C11 | C12 | C13 | C33 | C44 | C66 | BV | GV | GV/BV | |
---|---|---|---|---|---|---|---|---|---|
C7 | 771 | 14 | 122 | 1224 | 78 | 138 | 365 | 238 | 0.65 |
α-C5N2 | 738 | 20 | 92 | 1375 | 43 | 88 | 362 | 220 | 0.61 |
β-C5N2 | 832 | 20 | 145 | 1264 | 80 | 98 | 394 | 230 | 0.58 |
tet-C3N4 | 542 | 154 | 282 | 1027 | 127 | 217 | 394 | 205 | 0.52 |
Space Group | a = b (Å) | c (Å) | ρ (g/cm3) | HV (GPa) | B0 (GPa) | |
---|---|---|---|---|---|---|
Diamond | Fd-3m | 3.56661 * | 3.517 | 98 | 445 † | |
C7 #115 | P-4m2 | 2.5290 | 7.3720 | 2.961 | 82 | 373 |
α-C5N2 #115 | P-4m2 | 2.5262 | 7.1428 | 3.208 | 65 | 383 |
β-C5N2 #115 | P-4m2 | 2.4929 | 7.2279 | 3.256 | 66 | 389 |
tet-C3N4#115 | P-4m2 | 2.4848 | 7.1433 | 3.466 | 65 | 385 |
c-C3N4#215 [3] | P-43m | 3.4300 [3] | 3.788 | 71 | 421 |
HV | B | GV | E ‡ | v ‡ | KIc § | |||
---|---|---|---|---|---|---|---|---|
T * | LO † | B0 * | BV | |||||
GPa | MPa·m½ | |||||||
Diamond | 98 | 90 | 445 ** | 530 ** | 1138 | 0.074 | 6.4 | |
C7 #115 | 82 | 76 | 373 | 365 | 238 | 586 | 0.232 | 4.7 |
α-C5N2 #115 | 65 | 64 | 383 | 362 | 220 | 549 | 0.247 | 4.2 |
β-C5N2 #115 | 66 | 69 | 389 | 394 | 230 | 577 | 0.256 | 4.9 |
tet-C3N4#115 | 65 | 67 | 385 | 394 | 205 | 524 | 0.278 | 4.8 |
c-C3N4#215 [3] | 71 | 73 | 421 | 422 †† | 397 †† | 907 | 0.142 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, S.F.; Solozhenko, V.L. Crystal Chemistry and First Principles Studies of Novel Superhard Tetragonal C7, C5N2, and C3N4. Crystals 2023, 13, 1111. https://doi.org/10.3390/cryst13071111
Matar SF, Solozhenko VL. Crystal Chemistry and First Principles Studies of Novel Superhard Tetragonal C7, C5N2, and C3N4. Crystals. 2023; 13(7):1111. https://doi.org/10.3390/cryst13071111
Chicago/Turabian StyleMatar, Samir F., and Vladimir L. Solozhenko. 2023. "Crystal Chemistry and First Principles Studies of Novel Superhard Tetragonal C7, C5N2, and C3N4" Crystals 13, no. 7: 1111. https://doi.org/10.3390/cryst13071111
APA StyleMatar, S. F., & Solozhenko, V. L. (2023). Crystal Chemistry and First Principles Studies of Novel Superhard Tetragonal C7, C5N2, and C3N4. Crystals, 13(7), 1111. https://doi.org/10.3390/cryst13071111