The Crystal Structure of Mg–Al–CO3 Layered Double Hydroxide
Abstract
:1. Introduction
Previous Crystal Structure Studies of Quintinite
2. Materials and Methods
2.1. Materials
2.2. Single-Crystal X-ray Diffraction
2.3. Powder X-ray Diffraction
3. Results
3.1. Crystal Structure Solution and Refinement
3.2. Powder X-ray Diffraction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mills, S.J.; Christy, A.G.; Génin, J.M.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef]
- Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, NY, USA, 2001; pp. 1–439. [Google Scholar]
- Duan, X.; Evans, D.G. Layered Double Hydroxides; Springer: Berlin, Germany, 2006; pp. 1–87. [Google Scholar] [CrossRef]
- Aminoff, G.; Broome, B. Contributions to the mineralogy of Långban. III. Contributions to the knowledge of the mineral pyroaurite. K. Sven. Vetensk. Akad. Handl. 1931, 9, 23–48. [Google Scholar]
- Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem. 2019, 269, 494–506. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Q.; O’Hare, D.; Sun, L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974. [Google Scholar] [CrossRef] [PubMed]
- Kameliya, J.; Verma, A.; Dutta, P.; Arora, C.; Vyas, S.; Varma, R.S. Layered Double Hydroxide Materials: A Review on Their Preparation, Characterization, and Applications. Inorganics 2023, 11, 121. [Google Scholar] [CrossRef]
- Rius, J.; Allmann, R. The superstructure of the double layer mineral wermlandite [Mg7(Al0.57,Fe3+0.43)2(OH)18]2+[(Ca0.6,Mg0.4)(SO4)2(H2O)12]2−. Z. fur Krist. 1984, 168, 133–144. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Chukanov, N.V.; Jonsson, E.; Pekov, I.V.; Belakovskiy, D.I.; Vigasina, M.F.; Zubkova, N.V.; Van, K.V.; Britvin, S.N. Erssonite, CaMg7Fe3+2(OH)18(SO4)2⋅12H2O, a new hydrotalcite-supergroup mineral from Långban, Sweden. Mineral. Mag. 2021, 85, 817–826. [Google Scholar] [CrossRef]
- Huminicki, D.M.C.; Hawthorne, F.C. The crystal structure of nikischerite, NaFe62+Al3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group. Can. Mineral. 2003, 41, 79–82. [Google Scholar] [CrossRef]
- Cooper, M.A.; Hawthorne, F.C. The crystal structure of shigaite, [AlMn22+(OH)6]3(SO4)2Na(H2O)6(H2O)6, a hydrotalcite group mineral. Can. Mineral. 1996, 34, 91–97. [Google Scholar]
- Sotiles, A.R.; Gomez, N.A.G.; Santos, M.P.; Grassi, M.T.; Wypych, F. Synthesis, characterization, thermal behavior and exchange reactions of new phases of layered double hydroxides with the chemical composition [M+26Al3(OH)18(SO4)2]. (A(H2O)6).6H2O (M+2 = Co, Ni; A = Li+, Na+, K+). Appl. Clay Sci. 2019, 181, 105217. [Google Scholar] [CrossRef]
- Sotiles, A.R.; Baika, L.M.; Grassi, M.T.; Wypych, F. Cation exchange reactions in layered double hydroxides intercalated with sulfate and alkali cations (A(H2O)6)[M+26Al3(OH)18(SO4)2].6H2O (M+2 = Mn, Mg, Zn, A+ = Li, Na, K). J. Am. Chem. Soc. 2019, 141, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Sotiles, A.R.; Wypych, F. Synthesis and topotactic exchange reactions of new layered double hydroxides intercalated with ammonium/sulfate. Solid State Sci. 2020, 106, 106304. [Google Scholar] [CrossRef]
- Serna, C.J.; Rendon, J.L.; Iglesias, J.E. Crystal-chemical study of layered [Al2Li(OH)6]+X−·nH2O. Clay Clay Miner. 1982, 30, 180–184. [Google Scholar] [CrossRef]
- Sissoko, I.; Iyagba, E.T.; Sahai, I.; Biloen, P. Anion intercalation and exchange in Al(OH)3– derived compounds. J. Solid State Chem. 1985, 60, 283–288. [Google Scholar] [CrossRef]
- Karcz, R.; Napruszewska, B.D.; Walczyk, A.; Kryściak-Czerwenka, J.; Duraczyńska, D.; Płaziński, W.; Serwicka, E.M. Comparative Physicochemical and Catalytic Study of Nanocrystalline Mg-Al Hydrotalcites Precipitated with Inorganic and Organic Bases. Nanomaterials 2022, 12, 2775. [Google Scholar] [CrossRef] [PubMed]
- Karcz, R.; Napruszewska, B.D.; Michalik, A.; Kryściak-Czerwenka, J.; Duraczyńska, D.; Serwicka, E.M. Fine Crystalline Mg-Al Hydrotalcites as Catalysts for Baeyer-Villiger Oxidation of Cyclohexanone with H2O2. Catalysts 2021, 11, 1493. [Google Scholar] [CrossRef]
- Yin, X.; Hua, Y.; Gao, Z. Two-Dimensional Materials for High-Performance Oxygen Evolution Reaction: Fundamentals, Recent Progress, and Improving Strategies. Renewables 2023, 1, 190–226. [Google Scholar] [CrossRef]
- Leão, A.D.; Oliveira, V.V.; Marinho, F.A.; Wanderley, A.G.; Aguiar, J.S.; Silva, T.G.; Soare, M.F.R.; Soares-Sobrinho, J.L. Hybrid systems of glibenclamide and layered double hydroxides for solubility enhancement for the treatment of diabetes mellitus II. Appl. Clay Sci. 2019, 181, 105218. [Google Scholar] [CrossRef]
- Francius, G.; André, E.; Soulé, S.; Merlin, C.; Carteret, C. Layered Double Hydroxides (LDH) as nanocarriers for antimicrobial chemotherapy: From formulation to targeted applications. Mater. Chem. Phys. 2023, 293, 126965. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.H.; Lee, J.H.; Park, Y.A.; Kang, Y.J.; Ji, H.G. Porous nanocomposite of layered double hydroxide nanosheet and chitosan biopolymer for cosmetic carrier application. Appl. Clay Sci. 2021, 205, 106067. [Google Scholar] [CrossRef]
- Zaghloul, A.; Benhiti, R.; Ichou, A.A.; Carja, G.; Soudani, A.; Zerbet, M.; Sinan, F.; Chiban, M. Characterization and application of MgAl layered double hydroxide for methyl orange removal from aqueous solution. Mater. Today 2021, 37, 3793–3797. [Google Scholar] [CrossRef]
- Grégoire, B.; Bantignies, J.L.; Le-Parc, R.; Prélot, B.; Zajac, J.; Layrac, G.; Tichit, D.; Martin-Gassin, G. Multiscale mechanistic study of the adsorption of methyl orange on the external surface of layered double hydroxide. J. Phys. Chem. C 2019, 123, 22212–22220. [Google Scholar] [CrossRef]
- Zhao, D.; Sheng, G.; Hu, J.; Chen, C.; Wang, X. The adsorption of Pb (II) on Mg2Al layered double hydroxide. Chem. Eng. J. 2011, 171, 167–174. [Google Scholar] [CrossRef]
- Yang, X.; Kameda, T.; Saito, Y.; Kumagai, S.; Yoshioka, T. Investigation of the mechanism of Cu (II) removal using Mg-Al layered double hydroxide intercalated with carbonate: Equilibrium and pH studies and solid-state analyses. Inorg. Chem. Commun. 2021, 132, 108839. [Google Scholar] [CrossRef]
- Nestroinaia, O.V.; Ryltsova, I.G.; Yaprintsev, M.N.; Nakisko, E.Y.; Seliverstov, E.S.; Lebedeva, O.E. Sorption of Congo Red anionic dye on natural hydrotalcite and stichtite: Kinetics and equilibrium. Clay Miner. 2022, 57, 105–113. [Google Scholar] [CrossRef]
- Guo, J.Y.; Zhang, W.; Zhao, X.J.; Jie, Y.; Song, H.T.; Xu, X.Y.; Lu, H.; Yan, H. Theoretical Study on the Mechanism of Removing Harmful Anions from Soil via Mg2al Layered Double Hydroxide as Stabilizer. SSRN 2022. [Google Scholar] [CrossRef]
- Ke, X.; Bernal, S.A.; Provis, J.L. Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cem. Concr. Res. 2017, 100, 1–13. [Google Scholar] [CrossRef]
- Sakai, M.; Imagawa, H.; Baba, N. Layered-double-hydroxide-based Ni catalyst for CO2 capture and methanation. Appl. Catal. A-Gen. 2022, 647, 118904. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Sheveleva, R.M.; Kasatkin, A.V.; Zolotarev, A.A.; Bocharov, V.N.; Kupchinenko, A.N.; Belakovsky, D.I. Crystal structure of hydrotalcite group mineral—Desautelsite, Mg6MnIII2(OH)16(CO3)·4H2O, and relationship between cation size and in-plane unit cell parameter. Symmetry 2023, 15, 1029. [Google Scholar] [CrossRef]
- Karpenko, V.Y.; Zhitova, E.S.; Pautov, L.A.; Agakhanov, A.A.; Siidra, O.I.; Krzhizhanovskaya, M.G.; Rassulov, V.A.; Bocharov, V.N. Akopovaite, Li2Al4(OH)12(CO3)(H2O)3, a new Li-member of the hydrotalcite supergroup from Turkestan Range, Kyrgyzstan. Mineral. Mag. 2020, 84, 301–311. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Yapaskurt, V.O. Crystal chemistry of chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a natural layered double hydroxide. Minerals 2019, 9, 221. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Pekov, I.V.; Chaikovskiy, I.I.; Chirkova, E.P.; Yapaskurt, V.O.; Bychkova, Y.V.; Belakovsky, D.I.; Chukanov, N.V.; Zubkova, N.V.; Krivovichev, S.V.; et al. Dritsite, Li2Al4(OH)12Cl2·3H2O, a new gibbsite-based hydrotalcite supergroup mineral. Minerals 2019, 9, 492. [Google Scholar] [CrossRef]
- Britto, S.; Thomas, G.S.; Kamath, P.V.; Kannan, S. Polymorphism and structural disorder in the carbonate containing layered double hydroxide of Li with Al. J. Phys. Chem. 2008, 112, 9510–9515. [Google Scholar] [CrossRef]
- Britto, S.; Kamath, P.V. Structure of Bayerite-Based Lithium–Aluminum Layered Double Hydroxides (LDHs): Observation of Monoclinic Symmetry. Inorg. Chem. 2009, 48, 11646–11654. [Google Scholar] [CrossRef]
- Britto, S.; Kamath, P.V. Polytypism in the lithium–aluminum layered double hydroxides: The [LiAl2(OH)6]+ layer as a structural synthon. Inorg. Chem. 2011, 50, 5619–5627. [Google Scholar] [CrossRef] [PubMed]
- Krivovichev, S.V.; Yakovenchuk, V.N.; Zhitova, E.S.; Zolotarev, A.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y. Crystal chemistry of natural layered double hydroxides. I. Quintinite-2H-3 c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineral. Mag. 2010, 74, 821–832. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Yakovenchuk, V.N.; Zhitova, E.S.; Zolotarev, A.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y. Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: First evidence of a monoclinic polytype in M2+-M3+ layered double hydroxides. Mineral. Mag. 2010, 74, 833–840. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Yakovenchuk, V.N.; Zhitova, E.S. Natural double layered hydroxides: Structure, chemistry, and information storage capacity. In Minerals as Advanced Materials II; Krivovichev, S.V., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 87–102. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Yakovenchuk, V.N.; Krivovichev, S.V.; Zolotarev, A.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y. Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg, Al-disordered quintinite-2H. Mineral. Mag. 2010, 74, 841–848. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Krivovichev, S.V.; Yakovenchuk, V.N.; Ivanyuk, G.Y.; Pakhomovsky, Y.A.; Mikhailova, J.A. Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline-ultrabasic massif, Kola peninsula, Russia. Mineral. Mag. 2018, 82, 329–346. [Google Scholar] [CrossRef]
- Arakcheeva, A.V.; Pushcharovskii, D.Y.; Rastsvetaeva, R.K.; Atencio, D.; Lubman, G.U. Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12(CO3)·3H2O, a new mineral from the hydrotalcite-manasseite group. Crystallogr. Rep. 1996, 41, 972–981. [Google Scholar]
- Chao, G.Y.; Gault, R.A. Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalcite-manasseite group. Can. Mineral. 1997, 35, 1541–1549. [Google Scholar]
- Zhitova, E.S.; Popov, M.P.; Krivovichev, S.V.; Zaitsev, A.N.; Vlasenko, N.S. Quintinite-1M from the Mariinsky Deposit, Ural Emerald Mines, Central Urals, Russia. Geol. Ore Depos. 2018, 59, 745–751. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Antonov, A.A.; Zhitova, E.S.; Zolotarev, A.A.; Krivovichev, V.G.; Yakovenchuk, V.N. Quintinite-1M from Bazhenovskoe deposit (Middle Ural, Russia): Crystal structure and properties. Vestnik Saint Petersburg Univ. Earth Sci. 2012, 7, 3–9. (In Russian) [Google Scholar]
- Piilonen, P.; Poirier, G.; Rowe, R.; Mitchell, R.; Robak, C. Mount Mather Creek, British Columbia—A new sodalite-bearing carbohydrothermal breccia deposit including a new Canadian occurrence for the rare minerals edingtonite and quintinite. Mineral. Mag. 2022, 86, 282–306. [Google Scholar] [CrossRef]
- Menezes, L.A.D.; Martins, J.M. The Jacupiranga mine Sao-Paulo, Brazil. Mineral. Rec. 1984, 15, 261–270. [Google Scholar]
- Alker, A.; Golob, P.; Postl, W.; Waltinger, H. Hydrotalkit, Nordstrandit und Motukoreait vom Stradner Kogel, südlich Gleichenberg, Steiermark. Mitt.-Bl. Abt. Mineral. Landesmuseum Joanneum 1981, 49, 1–13. [Google Scholar]
- Mills, S.J.; Christy, A.G.; Schmitt, R. The creation of neotypes for hydrotalcite. Mineral. Mag. 2016, 80, 1023–1029. [Google Scholar] [CrossRef]
- Raade, G. Hydrotalcite and quintinite from Dypingdal, snarum, Buskerud, Norway. Norsk Bergverksmuseum Skrifter 2013, 50, 55–57. [Google Scholar]
- Oliveira, S.B.D.; Sant’Agostino, L.M. Lithogeochemistry and 3D geological modeling of the apatite-bearing Mesquita Sampaio beforsite, Jacupiranga alkaline complex, Brazil. Brazil. J. Geol. 2020, 50, e20190071. [Google Scholar] [CrossRef]
- CrysAlisPro Software System, Version 1.171.38.46; Rigaku Oxford Diffraction: Oxford, UK, 2015.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Britvin, S.N.; Dolivo-Dobrovolsky, D.V.; Krzhizhanovskaya, M.G. Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO 2017, 146, 104–107. (In Russian) [Google Scholar]
- TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker-AXS: Karlsruhe, Germany, 2009.
- Zhitova, E.S.; Krivovichev, S.V.; Pekov, I.V.; Yakovenchuk, V.N.; Pakhomovsky, Y.A. Correlation between the d-value and the M2+: M3+ cation ratio in Mg–Al–CO3 layered double hydroxides. Appl. Clay Sci. 2016, 130, 2–11. [Google Scholar] [CrossRef]
- Guinier, A.; Bokij, G.B.; Boll-Dornberger, K.; Cowley, J.M.; Ďurovič, S.; Jagodzinski, H.; Krishna, P.; de Woff, P.M.; Zvyagin, B.B.; Cox, D.E.; et al. Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the nomenclature of disordered, modulated and polytype structures. Acta Crystallogr. A 1984, 40, 399–404. [Google Scholar] [CrossRef]
- Černý, P. Hydrotalcite z Véžná na zapadni Morave. Acta Musei Moraviae 1963, XLVII, 23–30. [Google Scholar]
- Allmann, R.; Jespen, H.P. Die struktur des hydrotalkits. Neues Jahrbuch Für Mineralogie Monatshefte 1969, 1969, 544–551. [Google Scholar]
- Lisitsina, V.A.; Drits, V.A.; Sokolova, T.N. New complex of secondary minerals-products of low temperature transformations of rocks, covering basalts of Atlantic Ocean underwater mountains. Lithol. Miner. Resour. 1985, 6, 20–39. [Google Scholar]
- Drits, V.A.; Sokolova, T.N.; Sokolova, G.V.; Cherkashin, V.I. New members of the hydrotalcite—Manasseite group. Clays Clay Miner. 1987, 35, 401–417. [Google Scholar] [CrossRef]
Sample | 91002 | C7029 |
---|---|---|
Crystal chemical data | ||
Crystal system | Trigonal | Trigonal |
Space group | P-3c1 | P-3c1 |
a (Å) | 5.2459 (14) | 5.2978 (5) |
c (Å) | 15.110 (5) | 15.1991 (19) |
V (Å3) | 360.1 (2) | 369.44 (8) |
Z | 1 | 1 |
Calculated density (g/cm3) | 2.198 | 2.127 |
Absorption coefficient | 0.486 | 0.472 |
Data collection | ||
Diffractometer | Bruker Smart APEX II | |
Temperature (K) | 293 | |
Radiation, wavelength (Å) | MoKα, 0.71073 | |
Range of data collection, 2θ (°) | 5.392–67.174 | 5.36–72.626 |
h, k, l ranges | −7→6, −7→7, −21→21 | −8→8, −8→8, −25→23 |
Total reflections collected | 5549 | 6783 |
Unique reflections (Rint) | 406 (0.0324) | 596 (0.0356) |
Number of unique reflections F > 2σ(F) | 320 | 424 |
Data completeness (%) | 100 | 100 |
Structure refinement | ||
Refinement method | Full-matrix least-squares on F2 | |
Weighting coefficients a, b | 0.0410, 1.1022 | 0.0330, 1.5179 |
Data/restrain/parameters | 406/2/34 | 596/2/34 |
R1 [F > 2σ(F)], wR2 [F > 2σ(F)] | 0.0541, 0.1288 | 0.0678, 0.1384 |
R1 all, wR2 all | 0.0685, 0.1378 | 0.0890, 0.1488 |
Goodness-of-fit on F2 | 1.183 | 1.117 |
Largest diff. peak and hole (ēÅ−3) | 0.38/−0.40 | 0.63/−0.56 |
Atom | x | y | Z | Ueq | s.o.f. | W.P. | Assigned Site Populations |
---|---|---|---|---|---|---|---|
Sample 91002 | |||||||
Octahedral sheet | |||||||
Mg | 0.3333 | 0.6667 | 0.4995 (1) | 0.0069 (4) | 0.3333 * | 4d | |
Al | 0 | 0 | 0.5 | 0.0107 (5) | 0.1667 * | 2b | Mg4Al2(OH)12 |
O1 | 0.3257 (5) | 0.3262 (5) | 0.5652 (1) | 0.0145 (4) | 1 * | 12g | |
H1 | 0.341 (9) | 0.315 (9) | 0.619 (3) | 0.036 (12) | 1 * | 12g | |
Interlayer gallery | |||||||
C1 | 0.3333 | 0.6667 | 0.745 (3) | 0.010 (7) | 0.033 * | 4d | (CO3)1.0(H2O)3.0 ** |
C2 | 0.360 (4) | 0 | 0.7500 | 0.028 (9) | 0.05 * | 6f | |
O2 | 0.290 (3) | 0.209 (2) | 0.7514 (8) | 0.033 (3) | 0.280 (11) | 12g | |
O3 | 0.362 (3) | 0.440 (2) | 0.751 (1) | 0.038 (4) | 0.291 (11) | 12g | |
Sample C7029 | |||||||
Octahedral sheet | |||||||
Mg | 0.3333 | 0.6667 | 0.4999 (2) | 0.0100 (3) | 0.3333 * | 4d | |
Al | 0 | 0 | 0.5000 | 0.0124 (4) | 0.1667 * | 2b | Mg4Al2(OH)12 |
O1 | 0.3228 (4) | 0.3227 (5) | 0.5655 (1) | 0.0176 (4) | 1 * | 12g | |
H1 | 0.341 (10) | 0.314 (10) | 0.625 (2) | 0.034 (11) | 1 * | 12g | |
Interlayer gallery | |||||||
C1 | 0.3333 | 0.6667 | 0.748 (6) | 0.025 (9) | 0.033 * | 4d | |
C2 | 0.363 (4) | 0 | 0.7500 | 0.021 (6) | 0.050 * | 6f | (CO3)1.0(H2O)2.9 ** |
O2 | 0.291 (3) | 0.210 (3) | 0.7497 (12) | 0.038 (3) | 0.272 (11) | 12g | |
O3 | 0.360 (3) | 0.440 (3) | 0.7500 (14) | 0.042 (3) | 0.279 (11) | 12g |
Atom | Atom | Bond Distance | Atom | Atom | Bond Distance | ||
---|---|---|---|---|---|---|---|
91002 | C7029 | 91002 | C7029 | ||||
Mg | O1 | 2.027 (3) | 2.053 (3) | C1 | O3 | 1.275 (10) | 1.277 (11) |
Mg | O1 1 | 2.022 (2) | 2.051 (2) | C2 | O2 | 1.317 (16) | 1.348 (16) |
Al | O1 | 1.974 (2) | 1.978 (2) | C2 | O3 1 | 1.304 (14) | 1.308 (14) |
Sample | D–H | d (D–H) | d (H…A) | <DHA | d (D…A) | A |
---|---|---|---|---|---|---|
91002 | O1–H1 | 0.82 (4) | 2.06(5) | 168(4) | 2.866(13) | O2 |
2.06(5) | 155(5) | 2.823(13) | O2 1 | |||
2.08(4) | 157(5) | 2.857(15) | O3 | |||
2.01(5) | 170(4) | 2.826(15) | O3 1 | |||
C7029 | O1–H1 | 0.91 (4) | 1.96(4) | 166(4) | 2.850(19) | O2 |
2.01(4) | 154(5) | 2.859(19) | O2 1 | |||
2.00(4) | 156(5) | 2.86(2) | O3 | |||
1.96(4) | 170(4) | 2.86(2) | O3 1 |
Locality | Kovdor, Russia | Mont Saint-Hilaire, Canada | Jacupiranga, Brazil | Bazhenovskoe Deposit, Russia | Ural Emerald Mines (Malyshevskoe), Russia |
---|---|---|---|---|---|
Occurrence | Late-stage hydrothermal mineral | Metosomatic alteration | |||
d00n-value (Å) 1 | 7.53–7.59 | 7.57 | 7.58 | 7.56 | 7.51 |
a` (Å) 2 | 3.03–3.065 | 3.05 | 3.05 | 3.050 | 3.021 |
Reference | [38,39,41,42] | [44] | [43]; this work | [46] | [45] |
Locality | Western Moravia, Czech Republic | Ampere and Josephine seamounts of the North Atlantic | Caspian lowland, Russia | Strandel Kogel, Austria | |
Occurrence | quartz-oligoclase pegmatites of spentinite rock | secondary in basalt voids | evaporites (saline deposits) | cavities of hauyn-nephelinite | |
d00n-value (Å) | 7.60 | 7.56 | 7.56 | 7.57 | |
a` (Å) | 3.05 | ? | 3.042 | 3.035 | |
Reference | [60,61] | [62] | [63] | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhitova, E.S.; Sheveleva, R.M.; Zolotarev, A.A.; Krivovichev, S.V. The Crystal Structure of Mg–Al–CO3 Layered Double Hydroxide. Crystals 2023, 13, 839. https://doi.org/10.3390/cryst13050839
Zhitova ES, Sheveleva RM, Zolotarev AA, Krivovichev SV. The Crystal Structure of Mg–Al–CO3 Layered Double Hydroxide. Crystals. 2023; 13(5):839. https://doi.org/10.3390/cryst13050839
Chicago/Turabian StyleZhitova, Elena S., Rezeda M. Sheveleva, Andrey A. Zolotarev, and Sergey V. Krivovichev. 2023. "The Crystal Structure of Mg–Al–CO3 Layered Double Hydroxide" Crystals 13, no. 5: 839. https://doi.org/10.3390/cryst13050839
APA StyleZhitova, E. S., Sheveleva, R. M., Zolotarev, A. A., & Krivovichev, S. V. (2023). The Crystal Structure of Mg–Al–CO3 Layered Double Hydroxide. Crystals, 13(5), 839. https://doi.org/10.3390/cryst13050839