Investigation of Structural and Electrical Properties of Al2O3/Al Composites Prepared by Aerosol Co-Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Salonitis, K.; Pandremenos, J.; Paralikas, J.; Chryssolouris, G. Multifunctional materials: Engineering applications and processing challenges. Int. J. Adv. Manuf. Technol. 2010, 49, 803–826. [Google Scholar] [CrossRef]
- Sadl, M.; Tomc, U.; Ursic, H. Investigating the Feasibility of Preparing Metal–Ceramic Multi-Layered Composites Using Only the Aerosol-Deposition Technique. Materials 2021, 14, 4548. [Google Scholar] [CrossRef] [PubMed]
- Sadl, M.; Tomc, U.; Prah, U.; Ursic, H. Protective Alumina Coatings Prepared by Aerosol Deposition on Magnetocaloric Gadolinium Elements. J. Microelectron. Electron. Compon. Mater. 2019, 49, 177–182. [Google Scholar]
- Seto, N.; Endo, K.; Sakamoto, N.; Hirose, S.; Akedo, J. Hard α-Al2O3 Film Coating on Industrial Roller Using Aerosol Deposition Method. J. Therm. Spray Technol. 2014, 23, 1373–1381. [Google Scholar] [CrossRef]
- Lu, J.; Wong, C.P. Recent Advances in High-k Nanocomposite materials for embedded capacitor applications. IEEE Trans. Dielectr. Electr. Insul 2008, 15, 1322–1328. [Google Scholar]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef]
- Hubbard, K.J.; Schlom, D.G. Thermodynamic stability of binary oxides in contact with silicon. Int. J. Mater. Res. 1996, 11, 2757–2776. [Google Scholar] [CrossRef]
- Misra, D.; Iwai, H.; Wong, H. High-k Gate Dielectrics. Electrochem. Soc. Interface 2005, 14, 30–34. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, Y.; Kim, J.; Nam, S. Application of Al2O3-based polyimide composite thick films to integrated substrates using aerosol deposition method. Mater. Sci. Eng. B 2009, 161, 104–108. [Google Scholar] [CrossRef]
- Wilkinson, D.; Langer, J.S.; Sen, P.N. Enhancement of the dielectric constant near a percolation threshold. Phys. Rev. B Condens. Matter. 1983, 28, 1081–1087. [Google Scholar] [CrossRef]
- Pecharromán, C.; Esteban-Betegón, F.; Bartolomé, J.; López-Esteban, S.; Moya, J. New Percolative BaTiO₃-Ni Composites with a High and Frequency-Independent Dielectric Constant. Adv. Mater. 2001, 13, 1541–1544. [Google Scholar] [CrossRef]
- Bobnar, V.; Hrovat, M.; Holc, J.; Kosec, M. All ceramic lead-free percolative composite with a colossal dielectric response. J. Eur. Ceram. Soc. 2008, 29, 725–729. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574–587. [Google Scholar] [CrossRef]
- Bergman, D.J.; Imry, Y. Critical Behavior of the Complex Dielectric Constant near the Percolation Threshold of a Heterogeneous Material. Phys. Rev. Lett. 1977, 39, 1222–1225. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 1992. [Google Scholar]
- Kim, J.J.; Kim, H.-K.; Lee, S.-H.; Lee, S.-G.; Kim, J.-S.; KIm, J.-S.; Lee, Y.-H. Dielectric properties of percolative BaTiO3/Ni composite film fabricated by aerosol deposition process. J. Mater. Sci. Mater. Electron. 2016, 27, 8567–8572. [Google Scholar] [CrossRef]
- Xiang, P.-H.; Dong, X.-L.; Feng, C.-D.; Liang, R.-H.; Wang, Y.-L. Dielectric behavior of lead zirconate titanate/silver composites. Mater. Chem. Phys. 2004, 97, 410–414. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.-K.; Lee, S.-H.; Choi, K.; Lee, Y.-H. Effect of Zn filler for percolative BaTiO3/Zn composite films fabricated by aerosol deposition. Ceram. Int. 2015, 41, 12153–23257. [Google Scholar]
- Yu, Z.; Ang, C. Maxwell-Wagner polarization in ceramic composites BaTiO3-(Ni0.3Zn0.7)Fe2.1O4. J. Appl. Phys. 2002, 91, 794–797. [Google Scholar] [CrossRef]
- Khansur, N.H.; Eckstein, U.; Li, Y.; Hall, D.A.; Kashta, J.; Webber, K.G. Revealing the effects on aerosol deposition on the substrate-film interface using NaCl coating. J. Am. Ceram. Soc. 2019, 102, 5763–5771. [Google Scholar] [CrossRef]
- Hanft, D.; Exner, J.; Schubert, M.; Stocker, T.; Fuierer, P.A.; Moos, R. An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications. J. Ceram. Sci. Technol. 2015, 6, 147–182. [Google Scholar]
- Schubert, M.; Hanft, D.; Nazarenus, T.; Exner, J.; Schubert, M.; Nieke, P.; Glosse, P.; Leupold, N.; Kita, J.; Moos, R. Powder aerosol deposition method—Novel applications in the field of sensing and energy technology. Funct. Mater. Lett. 2019, 12, 1930005. [Google Scholar] [CrossRef]
- Akedo, J. Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices. J. Therm. Spray Technol. 2008, 17, 181–198. [Google Scholar] [CrossRef]
- Schubert, M.; Leupold, N.; Exner, J.; Kita, J.; Moos, R. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities. J. Therm. Spray Technol. 2018, 27, 870–879. [Google Scholar] [CrossRef]
- Leupold, N.; Schubert, M.; Kita, J.; Moos, R. Influence of high temperature annealing on the dielectric properties of alumina films prepared by the aerosol deposition method. Funct. Mater. Lett. 2018, 11, 1850022. [Google Scholar] [CrossRef]
- Lee, C.; Cho, M.-Y.; Kim, M.; Jang, J.; Oh, Y.; Oh, K.; Kim, S.; Park, B.; Kim, B.; Koo, S.-M.; et al. Applicability of Aerosol Deposition Process for flexible electronic device and determining the Film Formation Mechanism with Cushioning Effects. Sci. Rep. 2019, 9, 2166. [Google Scholar] [CrossRef]
- Cho, M.-Y.; Lee, D.-W.; Ko, P.-J.; Koo, S.-M.; Kim, J.; Coi, Y.-K.; Oh, J.-M. Adhesive Mechanism of Al2O3/Cu Composite Film via Aerosol Deposition Process for Application of Film Resistor. Eletron. Mater. Lett. 2019, 15, 227–237. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- COMSOL Multiphysics®, Version 5.5, Stockholm, Sweden. Available online: comsol.com (accessed on 11 November 2022).
- Haynes, W.M. CRC Handbook of Chemistry and Physics; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lunkenheimer, P.; Bobnar, V.; Pronin, A.V.; Ritus, A.I.; Volkov, A.A.; Loidl, A. Origin of apparent colossal dielectric constants. Phys. Rev. B Condens. Matter 2002, 66, 052105. [Google Scholar] [CrossRef]
- Moulson, A.J. Electroceramics: Materials, Properties, Applications; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Henon, J.; Piechowiak, M.A.; Durand-Panteix, O.; Etchgoyen, G.; Masson, O.; Dublanche-Tixier, C.; Marchet, P.; Lucas, B.; Rossignol, F. Dense and highly textured coatings obtained by aerosol deposition method from Ti3SiC2 powder: Comparison to a dense material sintered by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2015, 35, 1179–1189. [Google Scholar] [CrossRef]
- Khansur, N.H.; Eckstein, U.; Benker, L.; Deisinger, U.; Merle, B.; Webber, K.G. Room temperature deposition of functional ceramic films on low-cost metal substrate. Ceram. Int. 2018, 44, 16295–16301. [Google Scholar] [CrossRef]
- Bobnar, V.; Levstik, A.; Huang, C.; Zhang, Q. Enhanced dielectric response in all-organic polyaniline-poly(vinylidene fluoride-trifluorothylenechlorotrifluoroethylene) composite. J. Non-Cryst. Solids 2007, 353, 205–209. [Google Scholar] [CrossRef]
- Asylum Research, ORCATM—Conductive AFM. Available online: https://afm.oxinst.com/assets/uploads/products/asylum/documents/ORCA%E2%84%A2-%E2%80%93-Conductive-AFM-Imaging-Using-the-MFP-3D%E2%84%A2-AFM.pdf (accessed on 4 March 2023).
- HP 4284A Precision LCR Meter Operation Manual. Available online: https://wiki.epfl.ch/carplat/documents/hp4284a_lcr_manual.pdf (accessed on 10 November 2022).
AD Parameters | |
---|---|
Carrier gas species | N2 |
Nozzle geometry (slit size) | (0.5 × 10) mm2 |
Nozzle-to-substrate distance | 5 mm |
Sweep speed | 5 mm × s−1 |
Gas flow rate | 4 L × min−1 |
Pressure in the deposition chamber | 0.2 mbar |
Physical Property | Al | Al2O3 |
---|---|---|
σ (S/m) | 3.7 × 107 | 0 |
εr’ (/) | 104 | 10 |
Density (g/cm3) | 2.70 | 3.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regis, V.; Šadl, M.; Brennecka, G.; Bradeško, A.; Tomc, U.; Uršič, H. Investigation of Structural and Electrical Properties of Al2O3/Al Composites Prepared by Aerosol Co-Deposition. Crystals 2023, 13, 850. https://doi.org/10.3390/cryst13050850
Regis V, Šadl M, Brennecka G, Bradeško A, Tomc U, Uršič H. Investigation of Structural and Electrical Properties of Al2O3/Al Composites Prepared by Aerosol Co-Deposition. Crystals. 2023; 13(5):850. https://doi.org/10.3390/cryst13050850
Chicago/Turabian StyleRegis, Victor, Matej Šadl, Geoff Brennecka, Andraž Bradeško, Urban Tomc, and Hana Uršič. 2023. "Investigation of Structural and Electrical Properties of Al2O3/Al Composites Prepared by Aerosol Co-Deposition" Crystals 13, no. 5: 850. https://doi.org/10.3390/cryst13050850
APA StyleRegis, V., Šadl, M., Brennecka, G., Bradeško, A., Tomc, U., & Uršič, H. (2023). Investigation of Structural and Electrical Properties of Al2O3/Al Composites Prepared by Aerosol Co-Deposition. Crystals, 13(5), 850. https://doi.org/10.3390/cryst13050850