Microwave Dielectric Properties of Li3TiO3F Oxyfluorides Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Yang, S.; Wu, S.Y.; Chen, X.M. Nonlinear variation of resonant frequency with temperature and temperature-dependent τf in Al2O3-TiO2 microwave dielectric composites. Appl. Phys. Lett. 2021, 118, 212902. [Google Scholar] [CrossRef]
- Chu, X.; Jiang, J.; Wang, J.Z.; Wu, Y.C.; Gan, L.; Zhang, T.J. A new high-Q×f Li4NbO4F microwave dielectric ceramic for LTCC applications. Ceram. Int. 2021, 47, 4344–4351. [Google Scholar] [CrossRef]
- Tian, H.R.; Zheng, J.J.; Liu, L.T.; Wu, H.T.; Kimura, H.; Lu, Y.Z.; Yue, Z.X. Structure characteristics and microwave dielectric properties of Pr2(Zr1−xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. J. Mater. Sci. Technol. 2022, 116, 121–129. [Google Scholar] [CrossRef]
- Tang, Y.; Li, H.; Li, J.; Fang, W.S.; Yang, Y.; Zhang, Z.Y.; Fang, L. Relationship between rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3−xMg1+xLiV3O12 ceramics with garnet structure. J. Eur. Ceram. Soc. 2021, 41, 7697–7702. [Google Scholar] [CrossRef]
- Liu, B.; Sha, K.; Zhou, M.F.; Song, K.X.; Huang, Y.H.; Hu, C.C. Novel low-εr MGa2O4 (M = Ca, Sr) microwave dielectric ceramics for 5G antenna applications at the Sub-6 GHz band. J. Eur. Ceram. Soc. 2021, 41, 5170–5175. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, H.; Peng, R.; Huang, F.Y.; Wu, X.H.; Tang, X.L. Effect of phase, chemical bond and vibration characteristics on the microwave dielectric properties of temperature-stable Zn1−x(Li0.5Bi0.5)xMoxW1−xO4 ceramics. J. Eur. Ceram. Soc. 2022, 42, 2813–2819. [Google Scholar] [CrossRef]
- Hsu, T.H.; Huang, C.L. Low-loss microwave dielectrics of Li2(1–x)MxWO4 (M= Mg, Zn; x = 0.01 − 0.09) for ULTCC applications. Mat. Sci. Semicon. Proc. 2023, 158, 107355. [Google Scholar] [CrossRef]
- Kokkonen, M.; Pálvölgyi, P.S.; Sliz, R.; Jantunen, H.L.; Kordas, K.; Myllymäki, S. An ultralow-loss and lightweight cellulose-coated silica foam for planar fresnel zone plate lens applications in future 6G devices. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 99–103. [Google Scholar] [CrossRef]
- Dahri, M.H.; Jamaluddin, M.H.; Abbasi, M.I.; Kamarudin, M.R. A review of wideband reflectarray antennas for 5G communication systems. IEEE Access 2017, 5, 17803–17815. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Fang, L.; Xiang, H.C.; Xu, M.Y.; Tang, Y.; Jantunen, H.; Li, C.C. Structural, infrared reflectivity spectra and microwave dielectric properties of the Li7Ti3O9F ceramic. Ceram. Int. 2019, 45, 10163–10169. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Y.; Xiang, H.C.; Yang, A.; Wang, Y.; Yin, C.Z.; Tian, Y.F.; Fang, L. Li5Ti2O6F: A new low-loss oxyfluoride microwave dielectric ceramic for LTCC applications. J. Mater. Sci. Technol. 2020, 55, 107–115. [Google Scholar] [CrossRef]
- Zhai, S.M.; Liu, P. Microwave dielectric properties of rock-salt structured Li7(Nb1−xTix)2O8−xF (0≤ x≤ 0.10) system with low sintering temperature. Ceram. Int. 2022, 48, 28268–28273. [Google Scholar] [CrossRef]
- Zhai, S.M.; Liu, P.; Zhang, S.S. A novel high-Q oxyfluoride Li4Mg2NbO6F microwave dielectric ceramic with low sintering temperature. J. Eur. Ceram. Soc. 2021, 41, 4478–4483. [Google Scholar] [CrossRef]
- Zhai, S.M.; Liu, P.; Zhang, S.S. Temperature stable Li5.5Nb1.5O6F-based microwave dielectric ceramics for LTCC applications. Ceram. Int. 2022, 48, 15951–15958. [Google Scholar] [CrossRef]
- Zhai, S.M.; Liu, P.; Wu, S.H. Low temperature sintered Li6MgTiNb1-xVxO8F microwave dielectric ceramics with high-quality factor. J. Eur. Ceram. Soc. 2023, 43, 82–87. [Google Scholar] [CrossRef]
- Gao, Y.F.; Jiang, J.; Wang, J.Z.; Gan, L.; Jiang, X.M.; Zhang, T.J. Li2+xZrO3Fx (0 ≤ x ≤ 1.25): A new high-Q×f and temperature-stable microwave dielectric ceramic system for LTCC applications. J. Am. Ceram. Soc. 2023, 106, 1881–1891. [Google Scholar] [CrossRef]
- Yuan, L.L.; Bian, J.J. Microwave dielectric properties of the lithium containing compounds with rock salt structure. Ferroelectrics 2009, 387, 123–129. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Huang, Y.W.; Wang, S.Y.; Zhang, Y.C. A novel temperature-stable (1-m)Li2TiO3-mZn3Nb2O8 microwave dielectric ceramic. Funct. Mater. Lett. 2022, 15, 2250006. [Google Scholar] [CrossRef]
- Szymanski, N.J.; Zeng, Y.; Bennett, T.; Patil, S.; Keum, J.K.; Self, E.C.; Bai, J.M.; Cai, Z.J.; Giovine, R.; Ouyang, B.; et al. Understanding the fluorination of disordered rocksalt cathodes through rational exploration of synthesis pathways. Chem. Mater. 2022, 34, 7015–7028. [Google Scholar] [CrossRef]
- Ding, Y.M.; Bian, J.J. Structural evolution, sintering behavior and microwave dielectric properties of (1 − x)Li2TiO3 + xLiF ceramics. Mater. Res. Bull. 2013, 48, 2776–2781. [Google Scholar] [CrossRef]
- Souza, N.D.G.; Paiva, D.V.M.; Mazzetto, S.E.; Silva, M.A.S.; Sombra, A.S.B.; Fechine, P.B.A. Microwave dielectric properties of Ba5Li2W3O15 ceramic with excess lithium for dielectric resonator antenna application. J. Electron. Mater. 2022, 51, 761–768. [Google Scholar] [CrossRef]
- Larson, A.C.; VonDreele, R.B. General Structure Analysis System (GSAS); In Los Alamos National Laboratory Report LAUR 86; 2004. Available online: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf (accessed on 15 February 2023).
- Hakki, B.W.; Coleman, P.D. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Courtney, W.E. Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microw. Theory Tech. 1970, 18, 476–485. [Google Scholar] [CrossRef]
- Xing, C.; Li, J.Z.; Wang, J.; Chen, H.L.; Qiao, H.Y.; Yin, X.Q.; Wang, Q.; Qi, Z.M.; Shi, F. Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba1+xMoO4 ceramics. Inorg. Chem. 2018, 57, 7121–7128. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Tan, J.J.; Yan, J.X.; Tao, Y.; Yao, N.N.; Ruan, X.M.; Pei, C.J. Effect of LiF addition on the sinterability, crystal structure and microwave dielectric properties of Li3Mg4NbO8 ceramics. J. Ceram. Process. Res. 2021, 22, 675–678. [Google Scholar]
- Song, X.Q.; Yin, C.Z.; Zou, Z.Y.; Yang, J.Q.; Zeng, F.F.; Wu, J.M.; Shi, Y.S.; Lu, W.Z.; Lei, W. Structural evolution and microwave dielectric properties of CaTiO3-La(Mg2/3Nb1/3)O3 ceramics. J. Am. Ceram. Soc. 2022, 105, 7415–7425. [Google Scholar] [CrossRef]
- Song, X.Q.; Du, K.; Li, J.; Lan, X.K.; Lu, W.Z.; Wang, X.H.; Lei, W. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 2019, 45, 279–286. [Google Scholar] [CrossRef]
- Qin, J.C.; Liu, Z.F.; Ma, M.S.; Liu, F.; Qi, Z.M.; Li, Y.X. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q×f value via Machine Learning. ACS Appl. Mater. Interfaces 2021, 13, 17817–17826. [Google Scholar] [CrossRef]
- Schlömann, E. Dielectric Losses in Ionic Crystals with Disordered Charge Distributions. Phys. Rev. 1964, 135, 412–418. [Google Scholar] [CrossRef]
- Tamura, H. Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 2006, 26, 1775–1780. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. Microstructural phenomena in low-firing ceramics. Mater. Chem. Phys. 2006, 26, 1775–1780. [Google Scholar] [CrossRef]
S.T. | Phase | Phase Quantity | ρm | ρt | a = b = c | V | Rwp | Rp |
---|---|---|---|---|---|---|---|---|
(°C) | (%) | (g/cm−3) | (g/cm−3) | (Å) | (Å3) | (%) | (%) | |
725 | Li3TiO3F | 96.657 | 3.192 | 3.200 | 4.133 | 70.599 | 8.490 | 6.720 |
Li2TiO3 | 3.343 | 3.430 | 8.277 | 566.980 | ||||
750 | Li3TiO3F | 97.245 | 3.199 | 3.204 | 4.130 | 70.450 | 9.660 | 7.420 |
Li2TiO3 | 2.755 | 3.407 | 8.295 | 570.830 | ||||
775 | Li3TiO3F | 92.367 | 3.229 | 3.172 | 4.126 | 70.218 | 8.400 | 6.620 |
LiF | 7.633 | 2.622 | 4.035 | 65.707 | ||||
800 | Li3TiO3F | 94.102 | 3.210 | 3.170 | 4.125 | 70.198 | 7.240 | 5.780 |
LiF | 5.898 | 2.637 | 4.028 | 65.337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, G.; Zhao, J.; Lu, Y.; Liu, H.; Pei, C.; Ding, Q.; Chen, M.; Zhang, Y.; Li, D.; Wang, F. Microwave Dielectric Properties of Li3TiO3F Oxyfluorides Ceramics. Crystals 2023, 13, 897. https://doi.org/10.3390/cryst13060897
Yao G, Zhao J, Lu Y, Liu H, Pei C, Ding Q, Chen M, Zhang Y, Li D, Wang F. Microwave Dielectric Properties of Li3TiO3F Oxyfluorides Ceramics. Crystals. 2023; 13(6):897. https://doi.org/10.3390/cryst13060897
Chicago/Turabian StyleYao, Guoguang, Jiuyan Zhao, Ya Lu, Hongkai Liu, Cuijin Pei, Qian Ding, Miao Chen, Yaming Zhang, Ding Li, and Fu Wang. 2023. "Microwave Dielectric Properties of Li3TiO3F Oxyfluorides Ceramics" Crystals 13, no. 6: 897. https://doi.org/10.3390/cryst13060897
APA StyleYao, G., Zhao, J., Lu, Y., Liu, H., Pei, C., Ding, Q., Chen, M., Zhang, Y., Li, D., & Wang, F. (2023). Microwave Dielectric Properties of Li3TiO3F Oxyfluorides Ceramics. Crystals, 13(6), 897. https://doi.org/10.3390/cryst13060897