Phase Structures and Dielectric Properties of (n + 1)SrO − nCeO2 (n = 2) Microwave Ceramic Systems with TiO2 Addition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.; Pang, L.X.; Wang, D.W.; Reaney, I.M. BiVO4 Based High: K Microwave Dielectric Materials: A Review. J. Mater. Chem. C Mater. 2018, 6, 9290–9313. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Pang, L.X.; Wang, D.W.; Li, C.; Jin, B.B.; Reaney, I.M. High Permittivity and Low Loss Microwave Dielectrics Suitable for 5G Resonators and Low Temperature Co-Fired Ceramic Architecture. J. Mater. Chem. C Mater. 2017, 5, 10094–10098. [Google Scholar] [CrossRef]
- Green, M.; Chen, X. Recent Progress of Nanomaterials for Microwave Absorption. J. Mater. 2019, 5, 503–541. [Google Scholar] [CrossRef]
- Green, M.; Xiang, P.; Liu, Z.; Murowchick, J.; Tan, X.; Huang, F.; Chen, X. Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles. J. Mater. 2019, 5, 133–146. [Google Scholar] [CrossRef]
- Trukhanov, A.; Astapovich, K.A.; Turchenko, V.A.; Almessiere, M.A.; Slimani, Y.; Baykal, A.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; et al. Influence of the Dysprosium Ions on Structure, Magnetic Characteristics and Origin of the Reflection Losses in the Ni-Co Spinels. J. Alloys Compd. 2020, 841, 155667. [Google Scholar] [CrossRef]
- Klygach, D.S.; Vakhitov, M.G.; Vinnik, D.A.; Bezborodov, A.; Gudkova, S.A.; Zhivulin, V.E.; Zherebtsov, D.A.; SakthiDharan, C.P.; Trukhanov, S.; Trukhanov, A.; et al. Measurement of Permittivity and Permeability of Barium Hexaferrite. J. Magn. Magn. Mater. 2018, 465, 290–294. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y.H.; Song, K.X.; Li, L.; Chen, X.M. Structural Evolution and Microwave Dielectric Properties in Sr2(Ti1-xSnx)O4 Ceramics. J. Eur. Ceram. Soc. 2018, 38, 3833–3839. [Google Scholar] [CrossRef]
- Algarou, N.A.; Slimani, Y.; Almessiere, M.A.; Sadaqat, A.; Trukhanov, A.; Gondal, M.A.; Hakeem, A.S.; Trukhanov, S.; Vakhitov, M.G.; Klygach, D.S.; et al. Functional Sr0.5ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) Hard-Soft Ferrite Nanocomposites: Structure, Magnetic and Microwave Properties. Nanomaterials 2020, 10, 2134. [Google Scholar] [CrossRef]
- Hao, S.Z.; Zhou, D.; Hussain, F.; Liu, W.F.; Su, J.Z.; Wang, D.W.; Wang, Q.P.; Qi, Z.M.; Singh, C.; Trukhanov, S. Structure, Spectral Analysis and Microwave Dielectric Properties of Novel x(NaBi)0.5MoO4-(1 − x)Bi2/3MoO4 (x = 0.2~0.8) Ceramics with Low Sintering Temperatures. J. Eur. Ceram. Soc. 2020, 40, 3569–3576. [Google Scholar] [CrossRef]
- Guo, H.H.; Zhou, D.; Du, C.; Wang, P.J.; Liu, W.F.; Pang, L.X.; Wang, Q.P.; Su, J.Z.; Singh, C.; Trukhanov, S. Temperature Stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-Based Microwave Dielectric Ceramics with Low Sintering Temperature and Ultra-Low Dielectric Loss for Dielectric Resonator Antenna Applications. J. Mater. Chem. C Mater. 2020, 8, 4690–4700. [Google Scholar] [CrossRef]
- Liu, B.; Hu, C.C.; Huang, Y.H.; Song, K.X. Effects of (Mg1/3Nb2/3) Substitution on the Structure and Microwave Dielectric Properties of Sr2TiO4 Ceramics. Mater. Lett. 2019, 253, 293–297. [Google Scholar] [CrossRef]
- Song, X.Q.; Lu, W.Z.; Wang, X.C.; Wang, X.H.; Fan, G.F.; Muhammad, R.; Lei, W. Sintering Behaviour and Microwave Dielectric Properties of BaAl2−2x(ZnSi)xSi2O8 Ceramics. J. Eur. Ceram. Soc. 2018, 38, 1529–1534. [Google Scholar] [CrossRef]
- Induja, I.J.; Sebastian, M.T. Microwave Dielectric Properties of Mineral Sillimanite Obtained by Conventional and Cold Sintering Process. J. Eur. Ceram. Soc. 2017, 37, 2143–2147. [Google Scholar] [CrossRef] [Green Version]
- Song, X.Q.; Lu, W.Z.; Lou, Y.H.; Chen, T.; Ta, S.W.; Fu, Z.X.; Lei, W. Synthesis, Lattice Energy and Microwave Dielectric Properties of BaCu2−xCoxSi2O7 Ceramics. J. Eur. Ceram. Soc. 2020, 40, 3035–3041. [Google Scholar] [CrossRef]
- Ohsato, H.; Tsunooka, T.; Sugiyama, T.; Kakimoto, K.I.; Ogawa, H. Forsterite Ceramics for Millimeterwave Dielectrics. J. Electroceram. 2006, 17, 445–450. [Google Scholar] [CrossRef]
- Su, C.; Ao, L.; Zhang, Z.; Zhai, Y.; Chen, J.; Tang, Y.; Liu, L.; Fang, L. Crystal Structure, Raman Spectra and Microwave Dielectric Properties of Novel Temperature-Stable LiYbSiO4 Ceramics. Ceram. Int. 2020, 46, 19996–20003. [Google Scholar] [CrossRef]
- Su, Q.; Qu, J.J.; Liu, F.; Feng, A.L.; Yuan, C.L.; Liu, X.; Meng, L.F.; Ding, G.A.; Su, M.W.; Chen, G.H. Dielectric Properties of Ti4+/Zr4+ Modified the SrCeO3-Based Microwave Ceramic Systems. J. Mater. Sci. Mater. Electron. 2023, 34, 156. [Google Scholar] [CrossRef]
- Dai, Q.; Zuo, R. A Novel Ultralow-Loss Sr2CeO4 Microwave Dielectric Ceramic and Its Property Modification. J. Eur. Ceram. Soc. 2019, 39, 1132–1136. [Google Scholar] [CrossRef]
- Hakki, B.W.; Coleman, P.D. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IEEE Trans. Microw. Theory Tech. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Rajput, S.S.; Keshri, S.; Gupta, V.R. Microwave Dielectric Properties of (1 − x)Mg0.95Zn0.05TiO3-(x)Ca0.6La0.8/3TiO3 Ceramic Composites. J. Alloys Compd. 2013, 552, 219–226. [Google Scholar] [CrossRef]
- Kim, E.S.; Yoon, K.H. Microwave Dielectric Properties of (1 − x)CaTiO3-xLi1/2Sm1/2TiO3 Ceramics. J. Eur. Ceram. Soc. 2003, 23, 2397–2401. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.L.; Song, S.H.; Ma, Q. Effect of Rare-Earth Nd/Sm Doping on the Structural and Multiferroic Properties of BiFeO3 Ceramics Prepared by Spark Plasma Sintering. Ceram. Int. 2020, 46, 15228–15235. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, N.; Long, X.; Ye, Z.G. New Antiferroelectric Solid Solution of (Mg1/2W1/2)O3-Pb(Zn1/2W1/2)O3 as Dielectric Ceramics. J. Am. Ceram. Soc. 2014, 97, 1700–1703. [Google Scholar] [CrossRef]
- Ahmad, T.; Ganguli, A.K. Reverse Micellar Route to Nanocrystalline Titanates (SrTiO3, Sr2TiO4, and PbTiO3): Structural Aspects and Dielectric Properties. J. Am. Ceram. Soc. 2006, 89, 1326–1332. [Google Scholar] [CrossRef]
- Mao, M.M.; Chen, X.M.; Liu, X.Q. Structure and Microwave Dielectric Properties of Solid Solution in SrLaAlO4-Sr2TiO4 System. J. Am. Ceram. Soc. 2011, 94, 3948–3952. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ichinose, N.; Mutoh, K. Microwave Dielectric Properties in the (1 − x) (Na1/2La1/2)TiO3−x(Li1/2Sm1/2)TiO3 Ceramic System. J. Eur. Ceram. Soc. 2003, 23, 2455–2459. [Google Scholar] [CrossRef]
- Lan, X.K.; Li, J.; Zou, Z.Y.; Xie, M.Q.; Fan, G.F.; Lu, W.Z.; Lei, W. Improved Sinterability and Microwave Dielectric Properties of [Zn0.5Ti0.5]3+-doped ZnAl2O4 Spinel Solid Solution. J. Am. Ceram. Soc. 2019, 102, 5952–5957. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Xiang, Q.; Tang, B.; Lu, J.; Zou, Y.; Zhang, S. Structure, Bond Characteristics and Raman Spectra of CaMg1−xMnxSi2O6 Microwave Dielectric Ceramics. Ceram. Int. 2019, 45, 14160–14166. [Google Scholar] [CrossRef]
- Pinatti, I.M.; Mazzo, T.M.; Gonçalves, R.F.; Varela, J.A.; Longo, E.; Rosa, I.L.V. CaTiO3 and Ca1−3xSmxTiO3: Photoluminescence and Morphology as a Result of Hydrothermal Microwave Methodology. Ceram. Int. 2016, 42, 1352–1360. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Liu, F.; Wei, X.; Yuan, C.; Liu, X.; Chen, G.; Feng, Q. X-ray Diffraction, Dielectric, and Raman Spectroscopy Studies of SrTiO3-Based Microwave Ceramics. J. Electron. Mater. 2016, 45, 715–721. [Google Scholar] [CrossRef]
- Scherban, T.; Villeneuve, R.; Abello, L.; Lucazeau, G. Raman Scattering Study of BaCeO3 and SrCeO3. Solid State Commun. 1992, 84, 341–344. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, G.; Cen, Z.; Yuan, C.; Yang, Y.; Li, W. Structure and Microwave Dielectric Characteristics of Lithium-Excess Ca0.6Nd0.8/3TiO3/(Li0.5Nd0.5)TiO3 Ceramics. Mater. Res. Bull. 2013, 48, 4924–4929. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, L.; Yang, D. Preparation and Positive Temperature Coefficient of Resistivity Behavior of BaTiO3-BaBiO3-Bi0.5Na0.5TiO3 Ceramics. J. Mater. Sci. Mater. Electron. 2015, 26, 8193–8198. [Google Scholar] [CrossRef]
- Fu, M.S.; Liu, X.Q.; Chen, X.M. Structure and Microwave Dielectric Characteristics of Ca1−xNd2x/3TiO3 Ceramics. J. Eur. Ceram. Soc. 2008, 28, 585–590. [Google Scholar] [CrossRef]
- Huang, C.-L.; Tsai, J.-T.; Chen, Y.-B. Dielectric Properties of (1 − y)Ca1−xLa2x/3TiO3 − y(Li, Nd)1/2TiO3 Ceramic System at Microwave Frequency. Mater. Res. Bull. 2001, 36, 547–556. [Google Scholar] [CrossRef]
- Ullah, B.; Lei, W.; Zou, Z.Y.; Wang, X.H.; Lu, W.Z. Synthesis Strategy, Phase-Chemical Structure and Microwave Dielectric Properties of Paraelectric Sr(1−3x/2)CexTiO3 ceramics. J. Alloys Compd. 2017, 695, 648–655. [Google Scholar] [CrossRef]
- Kim, E.S.; Chun, B.S.; Kang, D.H. Effects of Structural Characteristics on Microwave Dielectric Properties of (1 − x)Ca0.85Nd0.1TiO3 − xLnAlO3 (Ln = Sm, Er and Dy) Ceramics. J. Eur. Ceram. Soc. 2007, 27, 3005–3010. [Google Scholar] [CrossRef]
- Lan, X.K.; Li, J.; Zou, Z.Y.; Fan, G.F.; Lu, W.Z.; Lei, W. Lattice Structure Analysis and Optimised Microwave Dielectric Properties of LiAl1−x(Zn0.5Si0.5)xO2 Solid Solutions. J. Eur. Ceram. Soc. 2019, 39, 2360–2364. [Google Scholar] [CrossRef]
- Liu, F.; Yuan, C.; Liu, X.; Qu, J.; Chen, G.; Zhou, C. Effects of Structural Characteristics on Microwave Dielectric Properties of (Sr0.2Ca0.488Nd0.208)Ti1−xGa4x/3O3 Ceramics. Mater. Res. Bull. 2015, 70, 678–683. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Zhang, P.; Hu, H.; Tao, Y.; Li, G. SrZnV2O7: A Low-Firing Microwave Dielectric Ceramic with High-Quality Factor. J. Am. Ceram. Soc. 2021, 104, 5110–5119. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, D.; Zou, S.L.; Wang, H.; Pang, L.X.; Yao, X. Microwave Dielectric Ceramics Li2MO4-TiO2 (M = Mo, W) with Low Sintering Temperatures. J. Am. Ceram. Soc. 2014, 97, 1819–1822. [Google Scholar] [CrossRef]
- Alford, N.M.; Breeze, J.; Wang, X.; Penn, S.J.; Dalla, S.; Webb, S.J.; Ljepojevic, N.; Aupi, X. Dielectric Loss of Oxide Single Crystals and Polycrystalline Analogues from 10 to 320 K. J. Eur. Ceram. Soc. 2001, 21, 2605–2611. [Google Scholar] [CrossRef]
- Behera, B.; Nayak, P.; Choudhary, R.N.P. Impedance Spectroscopy Study of NaBa2V5O15 Ceramic. J. Alloys Compd. 2007, 436, 226–232. [Google Scholar] [CrossRef]
- Lily, K.; Kumari, K.; Prasad, K.; Choudhary, R.N.P. Impedance Spectroscopy of (Na0.5Bi0.5) (Zr0.25Ti0.75)O3 Lead-Free Ceramic. J. Alloys Compd. 2008, 453, 325–331. [Google Scholar] [CrossRef]
- Barick, B.K.; Mishra, K.K.; Arora, A.K.; Choudhary, R.N.P.; Pradhan, D.K. Impedance and Raman Spectroscopic Studies of (Na0.5Bi0.5)TiO3. J. Phys. D Appl. Phys. 2011, 44, 355402. [Google Scholar] [CrossRef]
- Christie, G. Microstructure—Ionic Conductivity Relationships in Ceria-Gadolinia Electrolytes. Solid State Ion. 1996, 83, 17–27. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Su, C.; Fang, L.; Wu, M.; Hu, C.; Fan, H. Space-Charge Relaxation and Electrical Conduction in K0.5Na0.5NbO3 at High Temperatures. Appl. Phys. A Mater. Sci. Process. 2011, 104, 1047–1051. [Google Scholar] [CrossRef]
- Green, M.; Liu, Z.; Xiang, P.; Liu, Y.; Zhou, M.; Tan, X.; Huang, F.; Liu, L.; Chen, X. Doped, Conductive SiO2 Nanoparticles for Large Microwave Absorption. Light Sci. Appl. 2018, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, D.; Li, J.; Gan, G.; Rao, Y.; Huang, X.; Yang, Y.; Shi, L.; Liao, Y.; Liu, C.; et al. Crystal Structure, Bond Energy, Raman Spectra, and Microwave Dielectric Properties of Ti-Doped Li3Mg2NbO6 Ceramics. J. Am. Ceram. Soc. 2020, 103, 4321–4332. [Google Scholar] [CrossRef]
- Tamura, H. Microwave Dielectric Losses Caused by Lattice Defects. J. Eur. Ceram. Soc. 2006, 26, 1775–1780. [Google Scholar] [CrossRef]
- Kim, W.S.; Kim, E.S.; Yoon, K.H. Effects of Sm3+ Substitution on Dielectric Properties of Ca1-xSm2x/3TiO3 Ceramics at Microwave Frequencies. J. Am. Ceram. Soc. 1999, 82, 2111–2115. [Google Scholar] [CrossRef]
Compounds | Sintering Temperature (°C) | f0 (GHz) | εr | Q × f (GHz) | Tan δ |
---|---|---|---|---|---|
x = 0.0 | 1330 | 7.27 | 32.1 | 40,200 | 0.000182 |
x = 0.0 | 1350 | 7.21 | 33.9 | 41,090 | 0.000181 |
x = 0.0 | 1370 | 7.17 | 33.9 | 39,810 | 0.000180 |
x = 0.0 | 1390 | 7.20 | 33.9 | 39,980 | 0.000180 |
x = 0.0 | 1410 | 7.23 | 33.2 | 40,060 | 0.000176 |
x = 0.1 | 1310 | 6.94 | 35.8 | 39,440 | 0.000176 |
x = 0.1 | 1330 | 6.88 | 36.8 | 40,950 | 0.000168 |
x = 0.1 | 1350 | 6.86 | 37.2 | 42,350 | 0.000163 |
x = 0.1 | 1370 | 6.85 | 37.1 | 42,310 | 0.000162 |
x = 0.1 | 1390 | 6.84 | 37.2 | 41,230 | 0.000166 |
x = 0.15 | 1310 | 6.83 | 35.9 | 26,280 | 0.000217 |
x = 0.15 | 1330 | 6.69 | 38.5 | 38,800 | 0.000152 |
x = 0.15 | 1350 | 6.65 | 39.3 | 43,150 | 0.000154 |
x = 0.15 | 1370 | 6.60 | 40.2 | 42,880 | 0.000154 |
x = 0.15 | 1390 | 6.59 | 40.3 | 42,240 | 0.000156 |
x = 0.2 | 1310 | 6.63 | 38.7 | 35,670 | 0.000186 |
x = 0.2 | 1330 | 6.56 | 40.3 | 44,020 | 0.000152 |
x = 0.2 | 1350 | 6.53 | 40.4 | 37,330 | 0.000175 |
x = 0.2 | 1370 | 6.52 | 40.9 | 38,330 | 0.000170 |
x = 0.2 | 1390 | 6.51 | 41.2 | 37,640 | 0.000174 |
x = 0.25 | 1310 | 6.33 | 41.7 | 40,360 | 0.000158 |
x = 0.25 | 1330 | 6.25 | 43.9 | 41,110 | 0.000152 |
x = 0.25 | 1350 | 6.21 | 44.6 | 42,660 | 0.000149 |
x = 0.25 | 1370 | 6.20 | 43.9 | 40,280 | 0.000155 |
x = 0.25 | 1390 | 6.19 | 45.2 | 40,440 | 0.000154 |
x = 0.3 | 1310 | 6.17 | 43.1 | 36,140 | 0.000171 |
x = 0.3 | 1330 | 6.08 | 45.8 | 41,650 | 0.000146 |
x = 0.3 | 1350 | 6.04 | 46.6 | 40,830 | 0.000149 |
x = 0.3 | 1370 | 6.01 | 47.3 | 41,190 | 0.000147 |
x = 0.3 | 1390 | 6.01 | 47.5 | 40,590 | 0.000149 |
x = 0.4 | 1310 | 5.79 | 48.6 | 36,860 | 0.000158 |
x = 0.4 | 1330 | 5.70 | 51.0 | 39,040 | 0.000147 |
x = 0.4 | 1350 | 5.68 | 51.5 | 39,700 | 0.000144 |
x = 0.4 | 1370 | 5.67 | 51.7 | 39,080 | 0.000146 |
x = 0.4 | 1390 | 5.66 | 51.8 | 38,530 | 0.000147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Qu, J.; Liu, F.; Yuan, C.; Liu, X.; Su, M.; Meng, L.; Chen, G. Phase Structures and Dielectric Properties of (n + 1)SrO − nCeO2 (n = 2) Microwave Ceramic Systems with TiO2 Addition. Crystals 2023, 13, 955. https://doi.org/10.3390/cryst13060955
Su Q, Qu J, Liu F, Yuan C, Liu X, Su M, Meng L, Chen G. Phase Structures and Dielectric Properties of (n + 1)SrO − nCeO2 (n = 2) Microwave Ceramic Systems with TiO2 Addition. Crystals. 2023; 13(6):955. https://doi.org/10.3390/cryst13060955
Chicago/Turabian StyleSu, Qi, Jingjing Qu, Fei Liu, Changlai Yuan, Xiao Liu, Mingwei Su, Liufang Meng, and Guohua Chen. 2023. "Phase Structures and Dielectric Properties of (n + 1)SrO − nCeO2 (n = 2) Microwave Ceramic Systems with TiO2 Addition" Crystals 13, no. 6: 955. https://doi.org/10.3390/cryst13060955
APA StyleSu, Q., Qu, J., Liu, F., Yuan, C., Liu, X., Su, M., Meng, L., & Chen, G. (2023). Phase Structures and Dielectric Properties of (n + 1)SrO − nCeO2 (n = 2) Microwave Ceramic Systems with TiO2 Addition. Crystals, 13(6), 955. https://doi.org/10.3390/cryst13060955