Structural Disorder of CuO, ZnO, and CuO/ZnO Nanowires and Their Effect on Thermal Conductivity
Abstract
:1. Introduction
- Determining the effect of confinement in the radial direction on thermal conductivity [3];
- Determining the surface effects on the thermal conductivity [14];
- Comparing the thermal conductivity among different nanostructures, such as gallium nitride [12];
- Determining the size dependence of the nanowires with thermal conductivity [15];
- Determining the effects of doping the nanowires and their relationship with thermal conductivity;
2. Methods
- is the self-energy of atom i (including atomic ionization energies and electronic affinities);
- is the bond order potential between the atoms i and j;
- is the Coulomb interactions;
- is the polarization term for organic systems;
- is the Van der Waals energy;
- is a charge barrier function;
- is the angular correction term.
3. Results
- At the nanowire ending, there is a localized compression effect where some prominences appear at the edges;
- In the regions of maximum undulation, there are stress effects due to the increase and decrease in interatomic distances and tensile and compress stresses;
- In intermediate zones, there are stable crystalline structures;
- Due to the loss of coordination number, the surface atoms show deformations of the crystalline structure.
- (1)
- At the ends of the nanowire, there is a localized compression effect with a considerable decrease in interatomic distances due to electrostatic attraction;
- (2)
- In the intermediate zones, there is a stable crystalline structure;
- (3)
- The surface atoms show a loss of crystallinity due to the low coordination number.
- (1)
- Cutting: corresponds to the transverse acoustic branch;
- (2)
- Expansion: corresponds to longitudinal acoustics and bending modes.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arshad, M.U.; Wei, C.; Li, Y.; Li, J.; Khakzad, M.; Guo, C.; Wu, C.; Naraghi, M. Mechanics—Microstructure relations in 1D, 2D and mixed dimensional carbon nanomaterials. Carbon N. Y. 2023, 204, 162–190. [Google Scholar] [CrossRef]
- Sun, C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 2007, 35, 1–159. [Google Scholar] [CrossRef]
- Galagali, S.M.; Vaidya, R.G.; Kamatagi, M.D.; Sankeshwar, N.S. Lattice thermal conductivity of ZnO nanowires. AIP Conf. Proc. 2015, 1665, 120017. [Google Scholar]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Araújo Júnior, E.A.; Nobre, F.X.; Sousa G da, S.; Cavalcante, L.S.; Rita de Morais Chaves Santos, M.; Souza, F.L.; Elias de Matos, J.M. Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. RSC Adv. 2017, 7, 24263–24281. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Ólafsson, S.; Gíslason, H.P. Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: Controversial origin and challenges. Prog. Mater. Sci. 2017, 90, 45–74. [Google Scholar] [CrossRef]
- Sheng, H.; Zheng, H.; Jia, S.; Li, L.; Cao, F.; Wu, S.; Han, W.; Liu, H.; Zhao, D.; Wang, J. Twin structures in CuO nanowires. J. Appl. Crystallogr. 2016, 49, 462–467. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.L. Structures of planar defects in ZnO nanobelts and nanowires. Micron 2009, 40, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Altaweel, A.; Gries, T.; Migot, S.; Boulet, P.; Mézin, A.; Belmonte, T. Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress. Surf. Coat. Technol. 2016, 305, 254–263. [Google Scholar] [CrossRef]
- Diao, K.; Zhang, J.; Zhou, M.; Tang, Y.; Wang, S.; Cui, X. Highly controllable and reproducible ZnO nanowire arrays growth with focused ion beam and low-temperature hydrothermal method. Appl. Surf. Sci. 2014, 317, 220–225. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Xia, S.; Zhang, T.; Wang, Y.; Wu, Y.; Wu, J. Reconstructing two-dimensional defects in CuO nanowires for efficient CO 2 electroreduction to ethylene. Chem. Commun. 2021, 57, 8276–8279. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lee, J.; Varshney, V.; Wohlwend, J.L.; Roy, A.K.; Luo, T. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics—A Comparative Study with Gallium Nitride. Sci. Rep. 2016, 6, 22504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igamberdiev, K.T.; Yuldashev, S.U.; Cho, H.D.; Kang, T.W.; Rakhimova, S.M.; Akhmedov, T.K. Study of the thermal conductivity of ZnO nanowires/PMMA composites. J. Korean Phys. Soc. 2012, 60, 1513–1516. [Google Scholar] [CrossRef]
- Kulkarni, A.J.; Zhou, M. Surface-effects-dominated thermal and mechanical responses of zinc oxide nanobelts. Acta Mech. Sin. 2006, 22, 217–224. [Google Scholar] [CrossRef]
- Tripathi, S.; Agarwal, R.; Singh, D. Size Dependent Elastic and Thermophysical Properties of Zinc Oxide Nanowires. Johns. Matthey Technol. Rev. 2019, 63, 166–176. [Google Scholar] [CrossRef]
- Igamberdiev, K.; Yuldashev, S.; Cho, H.D.; Kang, T.W.; Shashkov, A. Thermal Conductivity of ZnO Nanowires Embedded in Poly(methyl methacrylate) Matrix. Appl. Phys. Express 2011, 4, 015001. [Google Scholar] [CrossRef]
- Londoño-Calderón, C.L.; Menchaca-Nal, S.; François, N.J.; Pampillo, L.G.; Froimowicz, P. Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light. ACS Appl. Nano Mater. 2020, 3, 2987–2996. [Google Scholar] [CrossRef]
- Hou, C.; Xu, J.; Ge, W.; Li, J. Molecular dynamics simulation overcoming the finite size effects of thermal conductivity of bulk silicon and silicon nanowires. Model. Simul. Mater. Sci. Eng. 2016, 24, 045005. [Google Scholar] [CrossRef]
- Dongre, B.; Wang, T.; Madsen, G.K.H. Comparison of the Green–Kubo and homogeneous non-equilibrium molecular dynamics methods for calculating thermal conductivity. Model. Simul. Mater. Sci. Eng. 2017, 25, 054001. [Google Scholar] [CrossRef] [Green Version]
- Tan EP, S.; Zhu, Y.; Yu, T.; Dai, L.; Sow, C.H.; Tan VB, C.; Lim, C.T. Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 2007, 90, 163112. [Google Scholar] [CrossRef]
- Jo, M.-S.; Song, H.-J.; Kim, B.-J.; Shin, Y.-K.; Kim, S.-H.; Tian, X.; Kim, S.-M.; Seo, M.-H.; Yoon, J.-B. Aligned CuO nanowire array for a high performance visible light photodetector. Sci. Rep. 2022, 12, 2284. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Qiao, L.; Zhao, Y.; Sun, Z.; Feng, W.; Zhang, Z.; Wang, J.; Men, X. Synergistic effects on thermal growth of CuO nanowires. J. Alloys Compd. 2020, 815, 152355. [Google Scholar] [CrossRef]
- Borschel, C.; Spindler, S.; Lerose, D.; Bochmann, A.; Christiansen, S.H.; Nietzsche, S.; Oertel, M.; Ronning, C. Permanent bending and alignment of ZnO nanowires. Nanotechnology 2011, 22, 185307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlassov, S.; Polyakov, B.; Oras, S.; Vahtrus, M.; Antsov, M.; Šutka, A.; Smits, K.; Dorogin, L.M.; Lõhmus, R. Complex tribomechanical characterization of ZnO nanowires: Nanomanipulations supported by FEM simulations. Nanotechnology 2016, 27, 335701. [Google Scholar] [CrossRef] [PubMed]
- Graton, O.; Poulin-Vittrant, G.; Hue LP, T.H.; Lethiecq, M. Strategy of modelling and simulation of electromechanical conversion in ZnO nanowires. Adv. Appl. Ceram. 2013, 112, 85–90. [Google Scholar] [CrossRef]
- Dai, L.; Cheong, W.C.D.; Sow, C.H.; Lim, C.T.; Tan, V.B.C. Molecular Dynamics Simulation of ZnO Nanowires: Size Effects, Defects, and Super Ductility. Langmuir 2010, 26, 1165–1171. [Google Scholar] [CrossRef]
- Costas, A.; Florica, C.; Preda, N.; Apostol, N.; Kuncser, A.; Nitescu, A.; Enculescu, I. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications. Sci. Rep. 2019, 9, 5553. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Shan, T.-R.; Cheng, Y.-T.; Devine, B.D.; Noordhoek, M.; Li, Y.; Lu, Z.; Phillpot, S.R.; Sinnott, S.B. Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials. Mater. Sci. Eng. R Rep. 2013, 74, 255–279. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Devine, B.; Shan, T.-R.; Cheng, Y.-T.; McGaughey AJ, H.; Lee, M.; Phillpot, S.R.; Sinnott, S.B. Atomistic simulations of copper oxidation and Cu/Cu 2O interfaces using charge-optimized many-body potentials. Phys. Rev. B 2011, 84, 125308. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S.J.; Norton, D.P.; Ip, K.; Heo, Y.W.; Steiner, T. RETRACTED: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 2005, 50, 293–340. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Yang, N.; Zhang, G.; Li, B. Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 2010, 5, 85–90. [Google Scholar] [CrossRef]
- Soleimani, A.; Araghi, H.; Zabihi, Z.; Alibakhshi, A. A comparative study of molecular dynamics simulation methods for evaluation of the thermal conductivity and phonon transport in Si nanowires. Comput. Mater. Sci. 2018, 142, 346–354. [Google Scholar] [CrossRef]
- Korzhavyi, P.A.; Johansson, B. Literature Review on the Properties of Cuprous Oxide Cu2O and the Process of Copper Oxidation; Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2011. [Google Scholar]
- Kongvarhodom, C.; Nammahachak, N.; Tippomuang, W.; Fongchaiya, S.; Turner, C.; Ratanaphan, S. Role of crystallographic textures on the growth of CuO nanowires via thermal oxidation. Corros. Sci. 2021, 193, 109898. [Google Scholar] [CrossRef]
- Wang, Z.L.; Pan, Z.W.; Dai, Z.R. Structures of Oxide Nanobelts and Nanowires. Microsc. Microanal. 2002, 8, 467–474. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.L.; Sun, T.; Qiu, J. Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires. Appl. Phys. Lett. 2007, 90, 153510. [Google Scholar] [CrossRef]
- Dulub, O.; Diebold, U.; Kresse, G. Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 2003, 90, 016102. [Google Scholar] [CrossRef]
- Soldano, G.J.; Zanotto, F.M.; Mariscal, M.M. Mechanical stability of zinc oxide nanowires under tensile loading: Is wurtzite stable at the nanoscale? RSC Adv. 2015, 5, 43563–43570. [Google Scholar] [CrossRef]
- Lee, W.-H.; Rhee, C.-K.; Koo, J.; Lee, J.; Jang, S.P.; Choi, S.U.; Lee, K.-W.; Bae, H.-Y.; Lee, G.-J.; Kim, C.-K.; et al. Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds. Nanoscale Res. Lett. 2011, 6, 258. [Google Scholar] [CrossRef] [Green Version]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Pal, B.; Mallick, S.S.; Pal, B. Anisotropic CuO nanostructures of different size and shape exhibit thermal conductivity superior than typical bulk powder. Colloids Surf. A Physicochem. Eng. Asp. 2014, 459, 282–289. [Google Scholar] [CrossRef]
- Barrado, C.M.; Leite, E.R.; Bueno, P.R.; Longo, E.; Varela, J.A. Thermal conductivity features of ZnO-based varistors using the laser-pulse method. Mater. Sci. Eng. A 2004, 371, 377–381. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Zhang, G.; Peng, C.; Yang, G. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Phys. Chem. Chem. Phys. 2014, 16, 3771. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-W.; Park, H.S.; Rabczuk, T. Polar surface effects on the thermal conductivity of ZnO nanowires: A shell-like surface reconstruction-induced preserving mechanism. Nanoscale 2013, 5, 11035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuldashev, S.U.; Yalishev, V.S.; Cho, H.D.; Kang, T.W. Thermal Conductivity of ZnO Single Nanowire. J. Nanosci. Nanotechnol. 2016, 16, 1592–1595. [Google Scholar] [CrossRef]
- Khan, M.A.; Nayan, N.; Ahmad, M.K.; Fhong, S.C.; Mohamed Ali, M.S.; Mustafa, M.K.; Tahir, M. Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices. Opt. Mater. (Amst). 2021, 117, 111132. [Google Scholar] [CrossRef]
CuO | ZnO | ||
---|---|---|---|
Structure | Tenorite | Structure | Wurtzite |
System | Monoclinic | System | Hexagonal |
a | 4.6837 Å | a | 3.250 Å |
b | 3.4226 Å | c | 5.207 Å |
c | 5.1288 Å | ||
β | 99.54° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giraldo-Daza, H.A.; Agudelo-Giraldo, J.D.; Londoño-Calderón, C.L.; Reyes-Pineda, H. Structural Disorder of CuO, ZnO, and CuO/ZnO Nanowires and Their Effect on Thermal Conductivity. Crystals 2023, 13, 953. https://doi.org/10.3390/cryst13060953
Giraldo-Daza HA, Agudelo-Giraldo JD, Londoño-Calderón CL, Reyes-Pineda H. Structural Disorder of CuO, ZnO, and CuO/ZnO Nanowires and Their Effect on Thermal Conductivity. Crystals. 2023; 13(6):953. https://doi.org/10.3390/cryst13060953
Chicago/Turabian StyleGiraldo-Daza, Helver Augusto, José Darío Agudelo-Giraldo, César Leandro Londoño-Calderón, and Henry Reyes-Pineda. 2023. "Structural Disorder of CuO, ZnO, and CuO/ZnO Nanowires and Their Effect on Thermal Conductivity" Crystals 13, no. 6: 953. https://doi.org/10.3390/cryst13060953
APA StyleGiraldo-Daza, H. A., Agudelo-Giraldo, J. D., Londoño-Calderón, C. L., & Reyes-Pineda, H. (2023). Structural Disorder of CuO, ZnO, and CuO/ZnO Nanowires and Their Effect on Thermal Conductivity. Crystals, 13(6), 953. https://doi.org/10.3390/cryst13060953