Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 1989, 33, 223–315. [Google Scholar] [CrossRef]
- Siegel, R. Cluster-assembled nanophase materials. Annu. Rev. Mater. Sci. 1991, 21, 559–578. [Google Scholar] [CrossRef]
- Kodama, R. Magnetic Nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372. [Google Scholar] [CrossRef]
- Lv, H.; Yao, M.; Li, Q.; Li, Z.; Liu, B.; Liu, R.; Lu, S.; Li, D.; Mao, J.; Ji, X.; et al. Effect on grain size on pressure-induced structural transition in Mn3O4. J. Phys. Chem. C 2012, 116, 2165–2171. [Google Scholar] [CrossRef]
- Srihari, V.; Verma, A.; Pandey, K.; Vishwanadh, B.; Panchal, V.; Garg, N.; Errandonea, D. Making Yb2Hf2O7 Defect Fluorite Uncompressible by Particle Size Reduction. J. Phys. Chem. C 2021, 125, 27354–27362. [Google Scholar] [CrossRef]
- Jiang, J.; Gerward, L.; Frost, D.; Secco, R.; Peyronneau, J.; Olsen, J. Grain-size effect on pressure-induced semiconductor-to-metal transition in ZnS. J. Appl. Phys. 1999, 86, 6608–6610. [Google Scholar] [CrossRef]
- Wang, Z.; Tait, K.; Zhao, Y.; Schiferl, D.; Zha, C.; Uchida, H.; Downs, R. Size-induced reduction of transition pressure and enhancement of bulk modulus of AlN Nanocrystals. J. Phys. Chem. B 2004, 108, 11506–11508. [Google Scholar] [CrossRef]
- Wang, Z.; Saxena, S.; Pischedda, V.; Liermann, H.; Zha, C. In situ X-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys. Rev. B 2001, 64, 012102. [Google Scholar] [CrossRef]
- Zvoriste-Walters, C.; Heathman, S.; Jovani-Abril, R.; Spino, J.; Janssen, A.; Caciuffo, R. Crystal size effect on the compressibility of nano-crystalline uranium dioxide. J. Nucl. Mater. 2013, 435, 123–127. [Google Scholar] [CrossRef]
- Bouras, K.; Schmerber, G.; Rinnert, H.; Aureau, D.; Park, H.; Ferblantier, G.; Colis, S.; Fix, T.; Park, C.; Kim, W.; et al. Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Sol. Energy Mater. Sol. Cells 2016, 145, 134–141. [Google Scholar] [CrossRef]
- Wu, J.; Kuo, C. Ultraviolet photodetectors made from SnO2 nanowires. Thin Solid Film. 2009, 517, 3870–3873. [Google Scholar] [CrossRef]
- Tsai, M.; Bierwagen, O.; Speck, J. Epitaxial Sb-doped SnO2 and Sn-doped In2O3 transparent conducting oxide contacts on GaN-based light emitting diodes. Thin Solid Film. 2016, 605, 186–192. [Google Scholar] [CrossRef]
- Ogale, S.; Choudhary, R.; Buban, J.; Lofland, S.; Shinde, S.; Kale, S.; Kulkarni, V.; Higgins, J.; Lanci, C.; Simpson, J.; et al. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2−δ. Phys. Rev. Lett. 2003, 91, 077205. [Google Scholar] [CrossRef] [PubMed]
- Tadeev, A.; Delabouglise, G.; Labeau, M. Influence of Pd and Pt additives on the microstructural and electrical properties of SnO2-based sensors. Mater. Sci. Eng. B 1998, 57, 76–83. [Google Scholar] [CrossRef]
- Chandra, A.; Kalpana, D.; Thangadurai, P.; Ramasamy, S. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. J. Power Sources 2002, 107, 138–141. [Google Scholar] [CrossRef]
- Xu, T.; Jiang, M.; Wan, P.; Tang, K.; Shi, D.; Kan, C. Bifunctional ultraviolet light-emitting/detecting device based on a SnO2 microwire/p-GaN heterojunction. Photonics Res. 2021, 9, 2475–2485. [Google Scholar] [CrossRef]
- Haines, J.; Leger, J. X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: Relationships between structure types and implications for other rutile-type dioxides. Phys. Rev. B 1997, 55, 11144. [Google Scholar] [CrossRef]
- Shieh, S.; Kubo, A.; Duffy, T.; Prakapenka, V.; Guoyin, G. High pressure phases in SnO2 to 117 GPa. Phys. Rev. B 2006, 73, 14105. [Google Scholar] [CrossRef]
- Parlinski, K.; Kawazoe, Y. Ab Initio study of phonons in the rutile structure of SnO2 under pressure. Eur. Phys. J. B 2000, 13, 679–683. [Google Scholar] [CrossRef]
- Hassan, F.; Alaeddine, A.; Zoaeter, M.; Rachidi, I. First-principles investigation of SnO2 at high pressure. Int. J. Mod. Phys. B 2005, 19, 4081–4092. [Google Scholar] [CrossRef]
- Gracia, L.; Beltran, A.; Andres, J. Characterization of high-pressure structures and phase transformations in SnO2. A density functional theory study. J. Phys. Chem. B 2007, 111, 6479–6485. [Google Scholar] [CrossRef] [PubMed]
- Casali, R.; Lasave, J.; Caravaca, M.; Koval, S.; Ponce, C.; Migoni, R. Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO2 under pressure. J. Phys. Condens. Matter 2013, 25, 135404. [Google Scholar] [CrossRef]
- Yang, L.; Weiliu, F.; Yanlu, L.; Wei, L.; Zhao, X. Pressure induced ferroelastic phase transition in SnO2 from density functional theory. J. Chem. Phys. 2014, 140, 164706. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, H.; Goncharov, A.; Gregoryanz, E.; Mao, H.; Hemley, R. Brillouin and Raman spectroscopy of the ferroelastic rutile-to-CaCl2 transition in SnO2 at high pressure. Phys. Rev. B 2003, 67, 174110. [Google Scholar] [CrossRef]
- Garg, A. Pressure induced volume anomaly and structural phase transition in nanocrystalline SnO2. Phys. Status Solidi B 2014, 251, 1380–1385. [Google Scholar] [CrossRef]
- Jiang, J.; Gerward, L.; Olsen, J. Pressure induced phase transformation in nanocrystal SnO2. Scr. Mater. 2001, 44, 1983–1986. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Chen, W.; Wang, Y.; Wang, H.; Zeng, Y.; Zhang, G.; Wang, L.; Liu, J.; Hu, T.; et al. High pressure behavior of SnO2 nanocrystals. Phys. Rev. B 2005, 72, 212102. [Google Scholar] [CrossRef]
- Grinblat, F.; Ferrari, S.; Pampillo, L.; Saccone, F.; Errandonea, D.; Santamaria-Perez, D.; Segura, A.; Vilaplana, R.; Popescu, C. Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals. Sol. State Sci. 2017, 64, 91–98. [Google Scholar] [CrossRef]
- Ferrari, S.; Bilovol, V.; Pampillo, L.; Grinblat, F.; Saccone, F.; Errandonea, D. Characterization of V-doped SnO2 nanoparticles at ambient and high pressures. Mater. Res. Express 2018, 5, 125005. [Google Scholar] [CrossRef]
- Ferrari, S.; Pampillo, L.; Saccone, F. Magnetic properties and environment sites in Fe doped SnO2 nanoparticles. Mater. Chem. Phys. 2016, 177, 206–212. [Google Scholar] [CrossRef]
- Hazen, R.; Finger, L. Bulk moduli and high-pressure crystal structures of rutile-type compounds. J. Phys. Chem. Solids 1981, 42, 143–151. [Google Scholar] [CrossRef]
- Bauer, W. Rutile type compounds. V. Refinements of MnO2 and MgF2. Acta Crystallogr. B 1976, 32, 2200–2204. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.; Lavernia, E. On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction. Metall. Mater. Trans. A 2003, 34, 1349–1355. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Tsai, Y.W.; Weng, S.C.; Chen, S.L.; Chang, S.L. Integrated optical chip for a high-resolution, single-resonance-mode X-ray monochromator system. Opt. Lett. 2021, 46, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Klotz, S.; Chervin, J.; Munsch, P.; Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equation of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Liu, X.F.; Gong, W.M.; Iqbal, J.; He, B.; Yu, R.H. Structural defects-mediated room-temperature ferromagnetism in Co-doped SnO2 insulating films. Thin Solid Film. 2009, 517, 6091–6095. [Google Scholar] [CrossRef]
- Gao, Y.; He, J.; Guo, J. Effect of co-doping and defects on electronic, magnetic, and optical properties in SnO2: A first-principles study. Phys. B 2022, 639, 413924. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Cryst. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Haines, J.; Leger, J.; Schulte, O. The high-pressure phase transition sequence from the rutile-type through to the cotunnite-type structure in PbO2. J. Phys. Condens. Matter 1996, 8, 1631. [Google Scholar] [CrossRef]
- Ross, N.; Shu, J.; Hazen, R.; Gasparik, T. High-pressure crystal chemistry of stishovite. Am. Mineral. 1990, 75, 739–747. [Google Scholar]
- Hyde, B.G. The effect of non-bonded, anion-anion interactions on the CaCl2/rutile transformation and on the bond lengths in the rutile type. Z. Krist. 1987, 179, 205–213. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Gonzalez-Platas, J. Comment on high pressure X-ray diffraction study of YBO3/ Eu3+, GdBO3, and EuBO3: Pressure induced amorphization in GdBO3. J. Appl. Phys. 2014, 115, 216101. [Google Scholar] [CrossRef]
- Anzellini, S.; Errandonea, D.; MacLeod, S.; Botella, P.; Daisenberger, D.; De’Ath, M.; Gonzalez-Platas, J.; Ibáñez, J.; McMahon, M.; Munro, K.; et al. Phase diagram of calcium at high pressure and high temperature. Phys. Rev. Mater. 2018, 2, 083608. [Google Scholar] [CrossRef]
- Bouabdalli, E.M.; El Jouad, M.; Garmim, T.; Louardi, H.; Hartiti, M.; Monkade, M.; Touhtouh, S.; Hajjaji, A. Elaboration and characterization of Ni and Al co-doped SnO2 thin films prepared by spray pyrolysis technique for photovoltaic applications. Mater. Sci. Eng. B 2022, 286, 116044. [Google Scholar] [CrossRef]
Sample | Bulk Modulus (GPa) Rutile-Type SnO2 | Bulk Modulus (GPa) CaCl2-Type SnO2 | Ref. |
---|---|---|---|
Bulk | 205 | 204 | [18] |
Bulk | 252 | ---- | [27] |
Bulk | 205 | 204 | [17] |
Nanocrystalline (5 nm) | 217 | --- | [25] |
Nanocrystalline (3 nm) | 233 | --- | [27] |
Nanocrystalline (30 nm) | 210 | 252 | [28] |
Nanocrystalline Fe-doped (18 nm) | 213 | 256 | [28] |
Nanocrystalline V-doped (13 nm) | 185 | -- | [29] |
Nanocrystalline Co-doped (15 nm) | 213(9) | 228(9) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panchal, V.; Pampillo, L.; Ferrari, S.; Bilovol, V.; Popescu, C.; Errandonea, D. Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals. Crystals 2023, 13, 900. https://doi.org/10.3390/cryst13060900
Panchal V, Pampillo L, Ferrari S, Bilovol V, Popescu C, Errandonea D. Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals. Crystals. 2023; 13(6):900. https://doi.org/10.3390/cryst13060900
Chicago/Turabian StylePanchal, Vinod, Laura Pampillo, Sergio Ferrari, Vitaliy Bilovol, Catalin Popescu, and Daniel Errandonea. 2023. "Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals" Crystals 13, no. 6: 900. https://doi.org/10.3390/cryst13060900
APA StylePanchal, V., Pampillo, L., Ferrari, S., Bilovol, V., Popescu, C., & Errandonea, D. (2023). Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals. Crystals, 13(6), 900. https://doi.org/10.3390/cryst13060900