High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. High Pressure Raman Scattering Study
3.2. High Pressure X-ray Diffraction Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Fujimoto, M. The Physics of Structural Phase Transitions; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Cross, E. Lead-free at last. Nature 2004, 432, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Ferroelectric Materials and Their Applications; Sole distributors for the USA and Canada, Elsevier Science Pub. Co.: Amsterdam, The Netherlands; New York, NY, USA, 1991. [Google Scholar]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.M.; Ahn, C.; Triscone, J.M. Physics of Ferroelectrics: A Modern Perspective; Springer: Berlin, Germany, 2007; Volume 105. [Google Scholar]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Scott, J.F. Applications of Modern Ferroelectrics. Science 2007, 315, 954. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.-G. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Htet, C.S.; Nayak, S.; Manjón-Sanz, A.; Liu, J.; Kong, J.; Sørensen, D.R.; Marlton, F.; Jørgensen, M.R.V.; Pramanick, A. Atomic structural mechanism for ferroelectric-antiferroelectric transformation in perovskite NaNbO3. Phys. Rev. B 2022, 105, 174113. [Google Scholar] [CrossRef]
- Vilarinho, R.; Bouvier, P.; Guennou, M.; Peral, I.; Weber, M.C.; Tavares, P.; Mihalik, M.; Mihalik, M.; Garbarino, G.; Mezouar, M.; et al. Crossover in the pressure evolution of elementary distortions in RFe3 perovskites and its impact on their phase transition. Phys. Rev. B 2019, 99, 064109. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.J.; Guennou, M.; Íñiguez, J.; Kreisel, J.; Bellaiche, L. Rules and mechanisms governing octahedral tilts in perovskites under pressure. Phys. Rev. B 2017, 96, 054102. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.S. Structural distortions in rare-earth transition-metal oxide perovskites under high pressure. Phys. Rev. B 2020, 101, 224104. [Google Scholar] [CrossRef]
- Mishra, S.K.; Choudhury, N.; Chaplot, S.L.; Krishna, P.S.R.; Mittal, R. Competing antiferroelectric and ferroelectric interactions in NaNbO3 Neutron diffraction and theoretical studies. Phys. Rev. B 2007, 76, 024110. [Google Scholar] [CrossRef] [Green Version]
- Xie, A.; Qi, H.; Zuo, R.; Tian, A.; Chen, J.; Zhang, S. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. J. Mater. Chem. C 2019, 7, 15153–15161. [Google Scholar] [CrossRef]
- Xu, Q.; Li, T.; Hao, H.; Zhang, S.; Wang, Z.; Cao, M.; Yao, Z.; Liu, H. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 2015, 35, 545–553. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mittal, R.; Pomjakushin, V.Y.; Chaplot, S.L. Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study. Phys. Rev. B 2011, 83, 134105. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Gupta, M.K.; Mittal, R.; Chaplot, S.L.; Hansen, T. Suppression of antiferroelectric state in NaNbO3 at high pressure from in situ neutron diffraction. Appl. Phys. Lett. 2012, 101, 242907. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Gupta, M.K.; Mittal, R.; Zbiri, M.; Rols, S.; Schober, H.; Chaplot, S.L. Phonon dynamics and inelastic neutron scattering of sodium niobate. Phys. Rev. B 2014, 89, 184303. [Google Scholar] [CrossRef] [Green Version]
- Lanfredi, S.; Lente, M.H.; Eiras, J.A. Phase transition at low temperature in NaNbO3 ceramic. Appl. Phys. Lett. 2002, 80, 2731–2733. [Google Scholar] [CrossRef]
- Lima, R.J.C.; Freire, P.T.C.; Sasaki, J.M.; Ayala, A.P.; Melo, F.E.A.; Mendes Filho, J.; Serra, K.C.; Lanfredi, S.; Lente, M.H.; Eiras, J.A. Temperature-dependent Raman scattering studies in NaNbO3 ceramics. J. Raman Spectrosc. 2002, 33, 669–674. [Google Scholar] [CrossRef]
- Lin, S.J.; Chiang, D.P.; Chen, Y.F.; Peng, C.H.; Liu, H.T.; Mei, J.K.; Tse, W.S.; Tsai, T.R.; Chiang, H.P. Raman scattering investigations of the low-temperature phase transition of NaNbO3. J. Raman Spectrosc. 2006, 37, 1442–1446. [Google Scholar] [CrossRef]
- Shen, Z.X.; Wang, X.B.; Kuok, M.H.; Tang, S.H. Raman scattering investigations of the antiferroelectric–ferroelectric phase transition of NaNbO3. J. Raman Spectrosc. 1998, 29, 379–384. [Google Scholar] [CrossRef]
- Shen, Z.X.; Wang, X.B.; Tang, S.H.; Kuok, M.H.; Malekfar, R. High-pressure Raman study and pressure-induced phase transitions of sodium niobate NaNbO3. J. Raman Spectrosc. 2000, 31, 439–443. [Google Scholar] [CrossRef]
- Shiratori, Y.; Magrez, A.; Dornseiffer, J.; Haegel, F.-H.; Pithan, C.; Waser, R. Polymorphism in Micro-, Submicro-, and Nanocrystalline NaNbO3. J. Phys. Chem. B 2005, 109, 20122–20130. [Google Scholar] [CrossRef]
- Shiratori, Y.; Magrez, A.; Fischer, W.; Pithan, C.; Waser, R. Temperature-induced Phase Transitions in Micro-, Submicro-, and Nanocrystalline NaNbO3. J. Phys. Chem. C 2007, 111, 18493–18502. [Google Scholar] [CrossRef]
- Shiratori, Y.; Magrez, A.; Kato, M.; Kasezawa, K.; Pithan, C.; Waser, R. Pressure-Induced Phase Transitions in Micro-, Submicro-, and Nanocrystalline NaNbO3. J. Phys. Chem. C 2008, 112, 9610–9616. [Google Scholar] [CrossRef]
- Kichanov, S.E.; Kozlenko, D.P.; Belozerova, N.M.; Jabarov, S.H.; Mehdiyeva, R.Z.; Lukin, E.V.; Mammadov, A.I.; Liermann, H.P.; Morgenroth, W.; Dubrovinsky, L.S.; et al. An intermediate antipolar phase in NaNbO3 under compression. Ferroelectrics 2017, 520, 22–33. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Mittal, R.; Sastry, P.U.; Chaplot, S.L. Effect of chemical pressure on competition and cooperation between polar and antiferrodistortive distortions in sodium niobate. Phys. Rev. Mater. 2017, 1, 074411. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Mittal, R.; Chaplot, S.L. Probing of structural phase transitions in barium titanate modified sodium niobate using Raman scattering. J. Raman Spectrosc. 2019, 50, 1177–1185. [Google Scholar] [CrossRef] [Green Version]
- Raevskii, I.P.; Proskuryakova, L.M.; Reznichenko, L.A.; Zvorykina, E.K.; Shilkina, L.A. Obtaining solid solutions in the NaNbO3-BaTiO3 system and investigation of its properties. Sov. Phys. J. 1978, 21, 259–261. [Google Scholar] [CrossRef]
- Zuo, R.; Qi, H.; Fu, J.; Li, J.; Shi, M.; Xu, Y. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl. Phys. Lett. 2016, 108, 232904. [Google Scholar] [CrossRef] [Green Version]
- Zuo, R.; Qi, H.; Fu, J.; Li, J.-F.; Li, L. Multiscale identification of local tetragonal distortion in NaNbO3-BaTiO3 weak relaxor ferroelectrics by Raman, synchrotron x-ray diffraction, and absorption spectra. Appl. Phys. Lett. 2017, 111, 132901. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Poswal, H.K.; Mittal, R.; Chaplot, S.L. Evidence of low-temperature phase transition in BaTiO3-modified NaNbO3: Raman spectroscopy study. J. Raman Spectrosc. 2019, 50, 1949–1955. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mrinal, J.; Mittal, R.; Krishna, P.S.R.; Reddy, V.R.; Chaplot, S.L. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction. Appl. Phys. Lett. 2018, 112, 182905. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.T.; Kwok, K.W.; Chan, H.L.W. Ferroelectric and Piezoelectric Properties of Na1−xBaxNb1−xTixO3 Ceramics. J. Am. Ceram. Soc. 2006, 89, 2828–2832. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Errandonea, D.; Meng, Y.; Somayazulu, M.; Häusermann, D. Pressure-induced α→ω transition in titanium metal: A systematic study of the effects of uniaxial stress. Phys. B Condens. Matter 2005, 355, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Errandonea, D.; Muñoz, A.; Gonzalez-Platas, J. Comment on “High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3”. J. Appl. Phys. 2014, 115, 216101. [Google Scholar] [CrossRef]
- Wang, X.B.; Shen, Z.X.; Tang, S.H.; Kuok, M.H. Near infrared excited micro-Raman spectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure. J. Appl. Phys. 1999, 85, 8011–8017. [Google Scholar] [CrossRef]
- Garg, N.; Pandey, K.K.; Shanavas, K.V.; Betty, C.A.; Sharma, S.M. Memory effect in low-density amorphous silicon under pressure. Phys. Rev. B 2011, 83, 115202. [Google Scholar] [CrossRef]
- Angel, R.J.; Zhao, J.; Ross, N.L. General Rules for Predicting Phase Transitions in Perovskites due to Octahedral Tilting. Phys. Rev. Lett. 2005, 95, 025503. [Google Scholar] [CrossRef] [Green Version]
Atom | Pressure = 4.1 GPa Space Group Pmc21 | Pressure = 38.48 GPa Space Group Pbnm | ||||||
---|---|---|---|---|---|---|---|---|
Positional Coordinates | Positional Coordinates | |||||||
x | y | z | B (Å2) | x | y | z | B (Å2) | |
Na1/Ba1 | 0.0000 | 0.2525(4) | 0.7637(7) | 1.98(5) | −0.059(5) | 0.505 (5) | 0.2500 | 2.81(5) |
Na2/Ba2 | 0.5000 | 0.2514(9) | 0.7691(5) | 0.35(7) | ||||
Nb/Ti | 0.7507(9) | 0.7480(8) | 0.7925(3) | 0.72(2) | 0.0000 | 0.0000 | 0.0000 | 1.30 (2) |
O1 | 0.0000 | 0.2185(7) | 0.3217(8) | 1.48(1) | 0.010 (3) | 0.019 (6) | 0.2500 | 1.23 (5) |
O2 | 0.5000 | 0.3109(9) | 0.2986(9) | 1.08(8) | 0.281(7) | 0.307 (4) | 0.039 (3) | 1.557(2) |
O3 | 0.2265(8) | 0.4482(6) | 0.2140(6) | 2.18(8) | ||||
O4 | 0.2667(6) | −0.086(5) | 0.6128(2) | 1.55(3) | ||||
Ao = 7.7425(4) Å; Bo = 5.4571(5) Å; Co = 5.5018(5) Å, Unit cell volume (V) = 232.46(9) Å3 Rp = 3.68 Rwp = 6.61; Rexp = 5.45; χ2 = 1.22 | Ao = 5.2147(7) Å; Bo = 5.3295(6) Å; Co = 7.3933(5) Å, Unit cell volume (V) = 205.41(9) Å3 Rp = 5.68 Rwp = 8.03; Rexp = 7.65; χ2 = 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.K.; Garg, N.; Gohil, S.; Mittal, R.; Chaplot, S.L. High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate. Crystals 2023, 13, 1181. https://doi.org/10.3390/cryst13081181
Mishra SK, Garg N, Gohil S, Mittal R, Chaplot SL. High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate. Crystals. 2023; 13(8):1181. https://doi.org/10.3390/cryst13081181
Chicago/Turabian StyleMishra, Sanjay Kumar, Nandini Garg, Smita Gohil, Ranjan Mittal, and Samrath Lal Chaplot. 2023. "High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate" Crystals 13, no. 8: 1181. https://doi.org/10.3390/cryst13081181
APA StyleMishra, S. K., Garg, N., Gohil, S., Mittal, R., & Chaplot, S. L. (2023). High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate. Crystals, 13(8), 1181. https://doi.org/10.3390/cryst13081181